1. 怎樣查自己電腦的內存條介面類型
電腦的內存條介面有如下三種:DDR、DDR2、DDR3。
現在主流的電腦使用DDR3介面,DDR2都很少見。因此查看內存條介面,無需拆機查看,只使用軟體查看內存條介面類型即可。
方法:
1,下載安裝魯大師、驅動精靈等軟體;
2,雙擊運行軟體,點擊「硬體檢測」可查看配置(顯示系統、CPU、主板、內存、顯卡、硬碟、顯示器、光碟機、音效卡等詳細信息);
3,其中「內存信息」即可顯示為DDR、DDR2還是DDR3。
2. 電腦內存條類型和內存條插槽類型有哪些怎麼對應鈔戒
SDR內存,DDR內存,DDR2三種內存都是插在DIMM插槽上的。不過,同樣採用DIMM,SDRAM
的介面與DDR內存的介面也略有不同,SDRAM
DIMM為168Pin
DIMM結構,金手指每面為84Pin,金手指上有兩個卡口,用來避免插入插槽時,錯誤將內存反向插入而導致燒毀;DDR
DIMM則採用184Pin
DIMM結構,金手指每面有92Pin,金手指上只有一個卡口。卡口數量的不同,是二者最為明顯的區別。DDR2
DIMM為240pin
DIMM結構,金手指每面有120Pin,與DDR
DIMM一樣金手指上也只有一個卡口,但是卡口的位置與DDR
DIMM稍微有一些不同,因此DDR內存是插不進DDR2
DIMM的,同理DDR2內存也是插不進DDR
DIMM的,因此在一些同時具有DDR
DIMM和DDR2
DIMM的主板上,不會出現將內存插錯插槽的問題。
3. 內存的介面類型有哪些 怎麼查看電腦有幾個內存條介面
其實針腳並不重要(就是說你可以不需要了解),重要
的是你知道你的內存是什麼類型就可以了,問友這款本本
明顯的採用ddr2系列內存,也就是說如果你擴展內存的話,購買
的時候(如果想自己動手的話)跟老闆講要ddr2
本本內存就行了。。。
就針腳而言,由於問友的內存是筆記本上用的,和台式機還是有區別的,通常
台式機ddr2系列內存的針腳為240針,而筆記本ddr2
則為200針,至於你問題中的
184則為台式機ddr1代內存的針腳,你的本本是無法添加的。。。。
總之添加的時候購買2代內存就可以了。。。
還有疑問請追問。。
真心希望能給你幫助!
4. (筆記本和台式機)內存條的插口類型有哪些,針腳數是多少,各用什麼工藝和局限性,性能對比怎麼樣
DDR內存和DDR2內存的頻率可以用工作頻率和等效頻率兩種方式表示,工作頻率是內存顆粒實際的工作頻率,但是由於DDR內存可以在脈沖的上升和下降沿都傳輸數據,因此傳輸數據的等效頻率是工作頻率的兩倍;而DDR2內存每個時鍾能夠以四倍於工作頻率的速度讀/寫數據,因此傳輸數據的等效頻率是工作頻率的四倍。例如DDR 200/266/333/400的工作頻率分別是100/133/166/200MHz,而等效頻率分別是200/266/333/400MHz;DDR2 400/533/667/800的工作頻率分別是100/133/166/200MHz,而等效頻率分別是400/533/667/800MHz。
介面類型是根據內存條金手指上導電觸片的數量來劃分的,金手指上的導電觸片也習慣稱為針腳數(Pin)。因為不同的內存採用的介面類型各不相同,而每種介面類型所採用的針腳數各不相同。筆記本內存一般採用144Pin、200Pin介面;台式機內存則基本使用168Pin和184Pin介面。對應於內存所採用的不同的針腳數,內存插槽類型也各不相同。目前台式機系統主要有SIMM、DIMM和RIMM三種類型的內存插槽,而筆記本內存插槽則是在SIMM和DIMM插槽基礎上發展而來,基本原理並沒有變化,只是在針腳數上略有改變。
金手指
金手指(connecting finger)是內存條上與內存插槽之間的連接部件,所有的信號都是通過金手指進行傳送的。金手指由眾多金黃色的導電觸片組成,因其表面鍍金而且導電觸片排列如手指狀,所以稱為「金手指」。金手指實際上是在覆銅板上通過特殊工藝再覆上一層金,因為金的抗氧化性極強,而且傳導性也很強。不過因為金昂貴的價格,目前較多的內存都採用鍍錫來代替,從上個世紀90年代開始錫材料就開始普及,目前主板、內存和顯卡等設備的「金手指」幾乎都是採用的錫材料,只有部分高性能伺服器/工作站的配件接觸點才會繼續採用鍍金的做法,價格自然不菲。
內存金手指
內存處理單元的所有數據流、電子流正是通過金手指與內存插槽的接觸與PC系統進行交換,是內存的輸出輸入埠,因此其製作工藝對於內存連接顯得相當重要。
內存插槽
最初的計算機系統通過單獨的晶元安裝內存,那時內存晶元都採用DIP(Dual ln-line Package,雙列直插式封裝)封裝,DIP晶元是通過安裝在插在匯流排插槽里的內存卡與系統連接,此時還沒有正式的內存插槽。DIP晶元有個最大的問題就在於安裝起來很麻煩,而且隨著時間的增加,由於系統溫度的反復變化,它會逐漸從插槽里偏移出來。隨著每日頻繁的計算機啟動和關閉,晶元不斷被加熱和冷卻,慢慢地晶元會偏離出插槽。最終導致接觸不好,產生內存錯誤。
早期還有另外一種方法是把內存晶元直接焊接在主板或擴展卡里,這樣有效避免了DIP晶元偏離的問題,但無法再對內存容量進行擴展,而且如果一個晶元發生損壞,整個系統都將不能使用,只能重新焊接一個晶元或更換包含壞晶元的主板,此種方法付出的代價較大,也極為不方便。
對於內存存儲器,大多數現代的系統都已採用單列直插內存模塊(Single Inline Memory Mole,SIMM)或雙列直插內存模塊(Dual Inline Memory Mole,DIMM)來替代單個內存晶元。早期的EDO和SDRAM內存,使用過SIMM和DIMM兩種插槽,但從SDRAM開始,就以DIMM插槽為主,而到了DDR和DDR2時代,SIMM插槽已經很少見了。下邊具體的說一下幾種常見的內存插槽。
SIMM(Single Inline Memory Mole,單內聯內存模塊)
內存條通過金手指與主板連接,內存條正反兩面都帶有金手指。金手指可以在兩面提供不同的信號,也可以提供相同的信號。SIMM就是一種兩側金手指都提供相同信號的內存結構,它多用於早期的FPM和EDD DRAM,最初一次只能傳輸8bif數據,後來逐漸發展出16bit、32bit的SIMM模組,其中8bit和16bitSIMM使用30pin介面,32bit的則使用72pin介面。在內存發展進入SDRAM時代後,SIMM逐漸被DIMM技術取代。
DIMM(Dual Inline Memory,雙內聯內存模塊)
DIMM與SIMM相當類似,不同的只是DIMM的金手指兩端不像SIMM那樣是互通的,它們各自獨立傳輸信號,因此可以滿足更多數據信號的傳送需要。同樣採用DIMM,SDRAM 的介面與DDR內存的介面也略有不同,SDRAM DIMM為168Pin DIMM結構,金手指每面為84Pin,金手指上有兩個卡口,用來避免插入插槽時,錯誤將內存反向插入而導致燒毀;DDR DIMM則採用184Pin DIMM結構,金手指每面有92Pin,金手指上只有一個卡口。卡口數量的不同,是二者最為明顯的區別。
為了滿足筆記本電腦對內存尺寸的要求,SO-DIMM(Small Outline DIMM Mole)也開發了出來,它的尺寸比標準的DIMM要小很多,而且引腳數也不相同。同樣SO-DIMM也根據SDRAM和DDR內存規格不同而不同,SDRAM的SO-DIMM只有144pin引腳,而DDR的SO-DIMM擁有200pin引腳。
RIMM
RIMM是Rambus公司生產的RDRAM內存所採用的介面類型,RIMM內存與DIMM的外型尺寸差不多,金手指同樣也是雙面的。RIMM有也184 Pin的針腳,在金手指的中間部分有兩個靠的很近的卡口。RIMM非ECC版有16位數據寬度,ECC版則都是18位寬。由於RDRAM內存較高的價格,此類內存在DIY市場很少見到,RIMM介面也就難得一見了。
顆粒封裝其實就是內存晶元所採用的封裝技術類型,封裝就是將內存晶元包裹起來,以避免晶元與外界接觸,防止外界對晶元的損害。空氣中的雜質和不良氣體,乃至水蒸氣都會腐蝕晶元上的精密電路,進而造成電學性能下降。不同的封裝技術在製造工序和工藝方面差異很大,封裝後對內存晶元自身性能的發揮也起到至關重要的作用。
隨著光電、微電製造工藝技術的飛速發展,電子產品始終在朝著更小、更輕、更便宜的方向發展,因此晶元元件的封裝形式也不斷得到改進。晶元的封裝技術多種多樣,有DIP、POFP、TSOP、BGA、QFP、CSP等等,種類不下三十種,經歷了從DIP、TSOP到BGA的發展歷程。晶元的封裝技術已經歷了幾代的變革,性能日益先進,晶元面積與封裝面積之比越來越接近,適用頻率越來越高,耐溫性能越來越好,以及引腳數增多,引腳間距減小,重量減小,可靠性提高,使用更加方便。
DIP封裝
上個世紀的70年代,晶元封裝基本都採用DIP(Dual ln-line Package,雙列直插式封裝)封裝,此封裝形式在當時具有適合PCB(印刷電路板)穿孔安裝,布線和操作較為方便等特點。DIP封裝的結構形式多種多樣,包括多層陶瓷雙列直插式DIP,單層陶瓷雙列直插式DIP,引線框架式DIP等。但DIP封裝形式封裝效率是很低的,其晶元面積和封裝面積之比為1:1.86,這樣封裝產品的面積較大,內存條PCB板的面積是固定的,封裝面積越大在內存上安裝晶元的數量就越少,內存條容量也就越小。同時較大的封裝面積對內存頻率、傳輸速率、電器性能的提升都有影響。理想狀態下晶元面積和封裝面積之比為1:1將是最好的,但這是無法實現的,除非不進行封裝,但隨著封裝技術的發展,這個比值日益接近,現在已經有了1:1.14的內存封裝技術。
TSOP封裝
到了上個世紀80年代,內存第二代的封裝技術TSOP出現,得到了業界廣泛的認可,時至今日仍舊是內存封裝的主流技術。TSOP是「Thin Small Outline Package」的縮寫,意思是薄型小尺寸封裝。TSOP內存是在晶元的周圍做出引腳,採用SMT技術(表面安裝技術)直接附著在PCB板的表面。TSOP封裝外形尺寸時,寄生參數(電流大幅度變化時,引起輸出電壓擾動) 減小,適合高頻應用,操作比較方便,可靠性也比較高。同時TSOP封裝具有成品率高,價格便宜等優點,因此得到了極為廣泛的應用。
TSOP封裝方式中,內存晶元是通過晶元引腳焊接在PCB板上的,焊點和PCB板的接觸面積較小,使得晶元向PCB辦傳熱就相對困難。而且TSOP封裝方式的內存在超過150MHz後,會產品較大的信號干擾和電磁干擾。
BGA封裝
20世紀90年代隨著技術的進步,晶元集成度不斷提高,I/O引腳數急劇增加,功耗也隨之增大,對集成電路封裝的要求也更加嚴格。為了滿足發展的需要,BGA封裝開始被應用於生產。BGA是英文Ball Grid Array Package的縮寫,即球柵陣列封裝。
採用BGA技術封裝的內存,可以使內存在體積不變的情況下內存容量提高兩到三倍,BGA與TSOP相比,具有更小的體積,更好的散熱性能和電性能。BGA封裝技術使每平方英寸的存儲量有了很大提升,採用BGA封裝技術的內存產品在相同容量下,體積只有TSOP封裝的三分之一;另外,與傳統TSOP封裝方式相比,BGA封裝方式有更加快速和有效的散熱途徑。
BGA封裝的I/O端子以圓形或柱狀焊點按陣列形式分布在封裝下面,BGA技術的優點是I/O引腳數雖然增加了,但引腳間距並沒有減小反而增加了,從而提高了組裝成品率;雖然它的功耗增加,但BGA能用可控塌陷晶元法焊接,從而可以改善它的電熱性能;厚度和重量都較以前的封裝技術有所減少;寄生參數減小,信號傳輸延遲小,使用頻率大大提高;組裝可用共面焊接,可靠性高。
說到BGA封裝就不能不提Kingmax公司的專利TinyBGA技術,TinyBGA英文全稱為Tiny Ball Grid Array(小型球柵陣列封裝),屬於是BGA封裝技術的一個分支,是Kingmax公司於1998年8月開發成功的,其晶元面積與封裝面積之比不小於1:1.14,可以使內存在體積不變的情況下內存容量提高2~3倍,與TSOP封裝產品相比,其具有更小的體積、更好的散熱性能和電性能。
採用TinyBGA封裝技術的內存產品在相同容量情況下體積只有TSOP封裝的1/3。TSOP封裝內存的引腳是由晶元四周引出的,而TinyBGA則是由晶元中心方向引出。這種方式有效地縮短了信號的傳導距離,信號傳輸線的長度僅是傳統的TSOP技術的1/4,因此信號的衰減也隨之減少。這樣不僅大幅提升了晶元的抗干擾、抗噪性能,而且提高了電性能。採用TinyBGA封裝晶元可抗高達300MHz的外頻,而採用傳統TSOP封裝技術最高只可抗150MHz的外頻。
TinyBGA封裝的內存其厚度也更薄(封裝高度小於0.8mm),從金屬基板到散熱體的有效散熱路徑僅有0.36mm。因此,TinyBGA內存擁有更高的熱傳導效率,非常適用於長時間運行的系統,穩定性極佳。
CSP封裝
CSP(Chip Scale Package),是晶元級封裝的意思。CSP封裝最新一代的內存晶元封裝技術,其技術性能又有了新的提升。CSP封裝可以讓晶元面積與封裝面積之比超過1:1.14,已經相當接近1:1的理想情況,絕對尺寸也僅有32平方毫米,約為普通的BGA的1/3,僅僅相當於TSOP內存晶元面積的1/6。與BGA封裝相比,同等空間下CSP封裝可以將存儲容量提高三倍。
CSP封裝內存不但體積小,同時也更薄,其金屬基板到散熱體的最有效散熱路徑僅有0.2毫米,大大提高了內存晶元在長時間運行後的可靠性,線路阻抗顯著減小,晶元速度也隨之得到大幅度提高。
CSP封裝內存晶元的中心引腳形式有效地縮短了信號的傳導距離,其衰減隨之減少,晶元的抗干擾、抗噪性能也能得到大幅提升,這也使得CSP的存取時間比BGA改善15%-20%。在CSP的封裝方式中,內存顆粒是通過一個個錫球焊接在PCB板上,由於焊點和PCB板的接觸面積較大,所以內存晶元在運行中所產生的熱量可以很容易地傳導到PCB板上並散發出去。CSP封裝可以從背面散熱,且熱效率良好,CSP的熱阻為35℃/W,而TSOP熱阻40℃/W
完美回答
5. 電腦有四個內存條插口,隨便插哪個都行嗎
電腦主板分為有四個內存條插口的大主板和有兩個內存條插口的小主板,有些小夥伴認為隨便插上就完事了,那你可就大錯特錯了。本期小編帶大家認識一下電腦內存條的安裝方法。
其實大部分小夥伴裝機內存條使用一根或者兩根,今天就以一根和兩根為例教大家如何安裝內存條。
首先我們先認識一下內存條在主板上插口的位置
一根內存條安裝方法:
分析 :一根內存條我們既要保證安裝在A通道上,又要避免離CPU散熱器距離太近,我們插內存條有個原則,那就是在同一通道盡量插遠端內存插槽,在A通道,自然是插A2插槽比較好。當然這個時候就會有小夥伴要問了,為什麼不是插在B1B2插口呢?原因在於距離CPU越近,傳輸信息越快並且穩定,結合我們小學二年級學習的物理知識,越近原則上功耗損失越少。所以我們權衡利弊一根內存條最佳安裝位置為A2。
雙根內存條安裝方法:
結論是A2+B2或者A1+B1優先前者
小夥伴可能會有疑問為什麼不是A1+A2或者B1+B2呢,小編給大夥舉個例子;兩輛車在同一單行道行駛,無論如何都不可能同時到達終點。這就是我們所謂雙根內存條組成雙通道,此時的速度是最快的。
6. 什麼是電腦介面常用介面有哪些呀
一、 並行介面
並行介面又簡稱為「並口」。目前,計算機中的並行介面主要作為列印機埠,使用的不再是36 針接頭而是25 針D 形接頭。所謂「並行」,是指8 位數據同時通過並行線進行傳送,這樣數據傳送速度大大提高,但並行傳送的線路長度受到限制 ,因為長度增加,干擾就會增加,數據也就容易出錯。現在有5 種常見的並口:4 位、8 位、半8 位、EPP 和ECP,大多數PC 機配有4 位或8 位的並口,支持全部IEEE1284 並口規格的計算機基本上都配有ECP 並口。
標准並行口指4 位、8 位和半8 位並行口。4 位口一次只能輸入4 位數據,但可以輸出8 位數據;8位口可以一次輸入和輸出8 位數據。EPP 口(增強並行口)由Intel 等公司開發,允許8 位雙向數據傳送,可以連接各種非列印機設備,如掃描儀、LAN 適配器、磁碟驅動器和CD-ROM 驅動器等。ECP 口(擴展並行口)由Microsoft 、HP 公司開發,能支持命令周期、數據周期和多個邏輯設備定址,在多任務環境下可以使用MA(直接存儲器訪問)。目前幾乎所有Pentium 級以上的主板都集成了並行口,並標注為Par-allel 1 或LPT 1,這是一個25 針的雙排針插座。
2.中斷處理方式
在這種方式下,CPU 不再被動等待,而是一直執行其他程序,一旦外設交換數據准備就緒,就向CPU提出服務請求。CPU 如果響應該請求,便暫時停止當前執行的程序,執行與該請求對應的服務程序,完成後,再繼續執行原來被中斷的程序。中斷處理方式的優點是顯而易見的,它不但為CPU 省去了查詢外設狀態和等待外設就緒的時間 ,提高了CPU 的工作效率,還滿足了外設的實時要求。但是需要為每個設備分配一個中斷號和相應的中斷服務程序,此外還需要一個中斷控制器(I/O 介面晶元)管理I/O 設備提出的中斷請求,例如設置中斷屏蔽 、中斷請求優先順序等,這樣將會加重系統的負擔。此外中斷處理方式的缺點是每傳送一個字元都要進行中斷,啟動中斷控制器,還要保留和恢復現場以便能繼續原程序的執行,系統的工作量很大,這樣如果需要大量數據交換,系統的性能會很低。
3.DMA(直接存儲器存取)傳送方式
DMA 最明顯的一個特點是採用一個專門的硬體電路——DMA 控制器控制內存與外設之間的數據交流,無須CPU 介入 ,從而大大提高了CPU 的工作效率。在進行DMA 數據傳送之前,DMA 控制器會向CPU 申請匯流排控制權。如果CPU 允許,則將控制權交出,因此在數據交換時,匯流排控制權由DMA 控制器掌握,在傳輸結束後,DMA 控制器將匯流排控制權交還給CPU,所以現在採用DMA 方式的設備CPU 佔用率都比較低。
不過由於計算機的外圍設備品種繁多,而且大多採用了機電傳動設備,因此現在CPU 在與I/O 設備進行數據交換時仍存在以下問題:
(1)速度不匹配。I/O 設備的工作速度要比CPU 慢許多,而且由於種類的不同,他們之間的速度差異也很大,例如硬碟的傳輸速度就要比列印機快出很多。
(2)時序不匹配。各個I/O 設備都有自己的定時控制電路,以自己的速度傳輸數據,無法與CPU 的時序取得統一。
(3)信息格式不匹配。不同的I/O 設備存儲和處理信息的格式不同,例如可以分為串列和並行兩種,也可以分為二進制格式、ACSII 編碼和BCD 編碼等。
(4)信息類型不匹配。
以上這些問題都是造成計算機實際使用效率不高的重要原因。
二、串列介面
計算機的標准介面叫做串列介面,簡稱為「串口」。現 在的PC 機一般有兩個串列口COM 1 和COM 2 。串列口不 同於並行口之處在於它的數據和控制信息是一位接一位 地傳送出去的。 雖然這樣速度會慢一些,但傳送距離較並行口更長, 因此若要進行較長距離的通信時,應使用串列口。通常 COM 1 使用的是9 針D 形連接器,而COM 2 有的使用的是 老式的DB25 針連接器。
三、usb 介面
USB 即「Universal Serial Bus 」,中文名稱為通 用串列匯流排。這是近兩年逐步在PC 領域廣為應用的新型介面技術。理論上講,USB 技術由3 部分組成:具備USB 介面的PC 系統、能夠支持USB 系統軟體和使用USB 介面 的設備。
自從微軟推出Win9x 以後,USB 進入實用階段。據 Dataquest 公司統計結果顯示,僅1999 年全球已有1 億台USB 設備售出,而這個數字到2000 年已增加到1 億 5000 萬台,預計到2001 年這個數字至少還會在這個基礎上翻一番。
USB 設備有兩種不同的連接器,稱為A 系列和B 系 列。A 系列連接器主要是為那些要求電纜保留永久連接 而設計的,比如集線器、鍵盤和滑鼠。大多數主板上的 USB 介面都是A 系列連接器。B 系列連接器是為那些需要可以分離電纜的設備二設計的。如列印機、掃描儀、Modem 等。物理的USB 插頭是小型的,與典型的串 口或並口電纜不同,插頭不是通過螺絲和螺母連接。
理論上USB 可以串列連接127 個設備,但在實際應用測試中,也許串聯3 ~4 個設備就已經力不從心了。
而且,作為USB 產品本身,只有鍵盤具備輸入、輸出雙頭設計,其 他產品一律只有一個輸入介面,所以就無法再連接另外一個USB 設 備。此時如果需要進行多個USB 設備的連接,就需要一個連接的橋 梁——USB HUB 。
目前的ATX 主板一般只有兩個內建的USB 介面(815E 晶元組將 此數量提升了一倍),但要連接4 個甚至4 個以上的USB 設備就必 須加裝USB HUB,通過USB HUB 來擴充USB 介面數量。
USB HUB 可以連接USB 設備,同時也可以串接另外一個USB HUB 。但是USB HUB 連續串接時不能超過三個,也就是說,不能 在第3 個被串聯的USB 介面上再串接USB HUB 。
USB HUB 的安裝步驟如下:
首先應開啟主板上的USB 介面。檢查 CMOS SETUP 中的USB 選項,如果是選擇為 Disabled,請將此選項改成Enabled,存 儲後進入Windows 便可找到USB 控制器。一 般的HUB 有一對二、一對四和一對五3 種 類型。所謂一對二,就是通過原來的一個 USB 介面,擴充出兩個USB 介面。說是一 對二,但由於會佔用原先的一個USB 口, 因此雖然擴充出兩個介面,但實質上只多出一個USB 介面。依此類推,一對四便可多出三個USB 介面,而一對五則可多出四個USB 介面(介面越多HUB 的價格當然也就越高,相應的耗電量也會增加)。以一對四的USB HUB 安裝舉例,這種USB HUB 有1 個輸入接頭和4 個輸出接頭。輸出接頭與輸入接頭的形狀不一樣,很容易區分。
同時,隨HUB 一般都會提供一條連接USB 裝置的導線,導線接頭一端用來連接USB 裝置(或USB HUB)的輸入端。導線的另一端接頭則是用來與USB HUB 輸出端連接的部分,依次對接安裝就可以了。值得注意的是,現在許多USB 設備本身已經具備了USB HUB 的功能。比如某些顯示器,其機殼背面有4 個USB輸出接頭(當然,還有一個是USB 輸入接頭),所以這台顯示器也可承擔一個USB HUB 的責任。還有一點就是電源,一對二的USB HUB 通常沒有外接電源,而一對四的USB HUB 則大部分附帶電源適配器,不過一對四的USBHUB就算不接電源,也是可以工作的,只是每個介面只能供電約100mA 左右,而一旦接上電源適配器,則可提升至500mA 左右。
目前最新的USB 標准為USB 2.0,它與上一版本的最大區別就是速度大幅提升。USB 2.0 數據傳輸率將達到480Mbit/s,整整比USB 1.1 超出40 倍。同時USB 2.0 保持了很好的兼容性,數據電纜和介面與以前的介面相同。換言之,USB 2.0 設備可以插在USB 1.1 介面上,而USB 1.1 設備也能夠插在USB 2.0介面上使用。
時至今日,USB 已經在PC 機的多種外設上得到應用。輸出設備方面 ,包括掃描儀、數碼相機、數碼攝像機、音頻系統、顯示器等等。掃描儀、數碼相機和數碼攝像機是最早使用USB 技術的產品,這幾種產品主要還是利用USB 的高速數據傳輸能力。輸入設備方面,USB 鍵盤、滑鼠器以及游戲桿都表現得極為穩定,很少出現問題。此外還有DSL 的USB 「貓」、IOMEGA 的USB ZIP 驅動器以及eTek 的USB PC網卡等等。如今越來越多的筆記本電腦都帶有USB 介面,這並不是說筆記本電腦可以從USB 介面中獲得多大的好處,關鍵在於那些經常在台式機和筆記本電腦之間傳輸數據的用戶,可以使用USB 介面提高工作效率。
四、IEEE 1394 介面
IEEE 1394 介面具有高速、可熱插拔等特點,在視 頻系統中被廣泛應用。由於電腦的飛速發展,現在已經在PC 機上看到1394 的身影了,如技嘉推出的GA-6VX7- 1394 主板就具有3 個1394 介面。IEEE 1394 的主板可廣 泛利用在各種視頻系統中,可通過IEEE 1394 介面簡單 地將數碼相機(VCR)里的數據直接送到PC 機里進行處理, 或通過IEEE 1394 介面傳輸到1394 硬碟里保存。而且 IEEE 1394 介面還可以用於網路連接,所有的設備均可通過IEEE 1394 介面高速傳輸數據。
可以預見,隨著USB 和IEEE 1394 介面的發展,以後機箱後面的介面種類有可能會大大減少,也許除了這兩種介面以外不會再有其他介面了。
五、磁碟介面
1.IDE 介面
IDE 介面也叫ATA 介面,只可以接兩個容量不 超過528MB 的硬碟驅動器。IDE 介面的成本很低, 因此在386 、486 時期非常流行。但大多數IDE 接 口不支持DMA 數據傳送,只能使用標準的PC I/O 埠指令來傳送所有的命令、狀態和數據。
2.EIDE 介面
EIDE 介面較IDE 介面有了很大改進,是目前 最流行的介面。首先它所支持的外設不再是2 個, 而是4 個。其支持的設備除了硬碟,還包括CD- ROM 驅動器和磁碟備份設備等。 其次,EIDE 標准取消了528MB 的容量限制,並 有更高的數據傳送速率和更低的系統資源佔用率。
3.SCSI 介面
SCSI(Small Computer System Interface) 介面又稱為小型計算機系統介面,在伺服器和圖 形工作站中被廣泛採用。除了硬碟使用這種介面 以外,SCSI 介面還可以連接CD-ROM 驅動器、掃描 儀和列印機等。
SCSI 介面具有以下幾個特點:
(1)可同時連接7 個外設;
(2)匯流排配置為並行8 位、16 位或32 位;
(3)支持更高的數據傳輸速率,SCSI 通常可以達到5MB/s,FAST SCSI(SCSI-2)能達到10MB/s,最新的SCSI-3 甚至能夠達到40MB/s;
(4)成本比IDE 和EIDE 介面高很多,而且SCSI 介面硬碟必須和SCSI 介面卡配合使用,SCSI 介面卡
也比IED 和EIDE 介面貴很多;
(5)SCSI 介面是智能化的,可以彼此通信而不增加CPU 的負擔。在IDE 和EIDE 設備之間傳輸數據時,CPU 必須參與,而SCSI 設備在數據傳輸過程中是主動運行的,能在SCSI 匯流排內部執行具體步驟,直至完成再通知CPU 。
此外還有藍牙介面,紅外線介面
7. 台式機內存條介面有幾種 如果介面一樣是不是就能使用
4種,1代2代已經淘汰3代主流.4代才出來,13年以後的電腦主板對內存基本上沒有兼容性的問題,主要看下內存對內存的兼容性
8. 如何查看電腦內存條介面
電腦的內存條介面有如下三種:DDR、DDR2、DDR3。
現在主流的電腦使用DDR3介面,DDR2都很少見。因此查看內存條介面,無需拆機查看,只使用軟體查看內存條介面類型即可。
方法:
1,下載安裝魯大師、驅動精靈等軟體;
2,雙擊運行軟體,點擊「硬體檢測」可查看配置(顯示系統、CPU、主板、內存、顯卡、硬碟、顯示器、光碟機、音效卡等詳細信息);
3,其中「內存信息」即可顯示為DDR、DDR2還是DDR3。
9. 電腦內存按介面分幾種
分類:
筆記本內存一般採用144Pin、200Pin介面。
台式機內存則基本使用168Pin和184Pin介面。
拓展:
1、對應於內存所採用的不同針腳數,內存插槽類型也各不相同。筆記本內存插槽分為SIMM和DIMM。台式機系統主要有SIMM、DIMM和RIMM三種類型的內存插槽。
2、SIMM(SingleInlineMemoryMole,單列直插內存模塊)。DIMM(DualInlineMemoryMole,雙列直插內存模塊)。
RIMM(RambusInlineMemoryMole)是Rambus公司生產的RDRAM內存所採用的介面類型。
10. 電腦的介面種類有哪些
1、串列口(COM)/並行口(LPT)
COM和LPT口於1970年由美國電子工業協會制定,後來又經歷了兩次改進。最早的串列口是25芯插頭,而不是我們今天經常看到的9芯。
後來由IBM改進為9芯的D口,最高速度為10Mbps。LPT和以前早期的COM口一樣也是25pin接頭,用於接列印機,最高速度為1.5mbps。早期用於接駁滑鼠,數據機,列印機等設備。
2、PS/2
PS/2介面早期見於各種兼容電腦上,雖然現在也能能看到PS/2介面,但是已經基本被USB所取代。PS/2介面用於接駁滑鼠和鍵盤,早期的PS/2介面鍵盤和滑鼠的介面是不能混用的。因為一個是雙向通信,一個是單向通信。
3、RJ-45
就是我們常見的網線介面。RJ-45有兩種接法,分別為T568A與T568B。我們最常見的是T568B接法,也就是白橙-橙-白綠-藍-白藍-綠-白棕-棕的接法。
4、USB
USB是由微軟,IBM,intel等公司牽手於1994年制定。當時COM口,PS/2,LPT等繁雜的介面不僅數量眾多,而且還有安裝驅動之後必須重啟才能用的問題。所以可以即插即用且支持熱插拔的USB應運而生。
目前USB基本可以連接一切外置設備。最早的USB1.0傳輸速率僅僅為1.5Mbps,而現在在路上的USB3.2標准已經達到了20Gbps。USB介面有多種外形,比如mico-USB,usb3.1-typec,Mini-A等。
5、Express Card
Express Card介面是2003年由PCMCIA協會制定的,用於筆記本擴展。它同時走PCI-E*1和USB協議,速度是老舊的cardbus匯流排的數倍。
6、雷電(Thunderbolt)
最早的Thunderbolt介面主要由intel於2009年制定,想用來取代USB介面。而2011年第一版的雷電跟隨MBP一起上市,但是因為雷電口高昂的授權費導致無法與雖然速度慢一些但是免費的USB3.0所抗衡,最終沒有成為主流。
最早的雷電走PCI-E2.0x4與DP1.1a協議。而現在的雷電3則是PCI-E3.0x4與DP1.2協議。介面上,雷電3開始介面外形和USB-TypeC保持一致。所以有些筆記本的USB-C介面既可以做雷電也可以做USB。