A. 什么是奥数
奥数其实不是很难,他包含的方面还算比较窄,1~2年级内容差不多,3~4年级内容差不多,5~6内容差不多。
1、2年级学填数(指图形中填数)、简单推理(简单等量代换)、观察图形、植树问题【点数比段数多1(
通常)】其中较难的是填数。
3、4年级学
简单推理(较难些)、
规律填数(非图形)、
算是谜题(巧解竖式、填入竖式中少的数),
变与不变(很简单的),
错中求解(这种你应该见过),
合理安排(就是要抓住可利用的时间:煮水··),
和倍问题,差倍问题,
植树问题(稍难),
还原问题(倒推),
盈亏问题(简单的),
行程问题(简单的),
巧算,
最短路线【给一个图,让你一笔画完,线段不能重复,或问能不能一笔画完(有规律)】
鸡兔同笼
5、6年级
分数的运算
数的整除
年龄问题
植树问题(难的)
还原问题(难的)
等差数列
包含与排除
盈亏问题
*
行程问题(难的)
*
工程问题
*
平面图形
立体图形
比和比例
周期问题
分数应用题
浓度问题
*
余数与同余
抽屉原理
*
牛吃草问题
*
打*为较难问题
B. 奥数是指什么
奥数”是奥林匹克数学竞赛的简称。
1934年-1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。
国际奥林匹克数学竞赛由参赛国轮流主办,经费由东道国提供;但旅费由参赛国自理。参赛选手必须是不超过20岁的中学生,每支代表队有学生6人;另派2名数学家为领队。试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。
东道国不提供试题。试题确定之后,写成英、法、德、俄文等工作语言,由领队译成本国文字。主试委员会由各国的领队及主办国指定的主席组成。这个主席通常是该国的数学权威。
国际奥林匹克数学竞赛是国际青少年数学大赛,在世界上影响非常之大。国际奥林匹克竞赛的目的是:发现鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。
这一竞赛1959年由东欧国家发起,得到联合国教科文组织的资助;第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克,匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。以后国际奥林匹克数学竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。
2013年参加这项赛事的代表队有80余支。美国1974年参加竞赛,中国1985年参加竞赛。经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化, 有了一整套约定俗成的常规,并为历届东道主所遵循。
C. 奥数是什么
“奥数”是奥林匹克数学竞赛的简称。1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。
国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。
2012年,IMO已成为一项国际上最有影响力的学科竞赛,同时也是公认水平最高的中学生数学竞赛。中国的数学竞赛始于1956年。在着名数学家华罗庚、苏步青等人的倡导下,由中国数学理事会发起,北京、天津、上海、武汉四城市首先举办了高中数学竞赛。
好处
奥数相对比较深,数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动。
有许多涉及到实际应用的问题,如计数、图论、逻辑、抽屉原理等。解决这类问题,一般都需要对实际问题的数学意义进行分析、归纳,把实际问题抽象成为数学问题,然后用相应的数学知识和方法去解决。
D. 什么是奥数
奥数就是有趣味的数学、有较大难度的数学、有好方法解决的数学、用来竞赛选拔的数学。
奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。
奥数中有我们平常数学课上所不讲、也没有时间去讲的一些数学分支的基础内容,比如图论、组合数学、数论等等,还有很重要的数学思想,比如构造思想、特殊化思想、化归思想等等。
涉猎这类知识,有利于培养学生对数学的兴趣,拓展他们的思维,增强思维的条理性,它们是对课堂教学的补充与扩展。
奥数题普遍比较难。既然是为竞赛服务,当然应该有难度才行,它们是普通课堂内容的深化和提高,不同的试题有多种不同的视角,需要有较深入的分析才可解答,这类考题可以考查学生对于基础知识的掌握程度。
(4)免费知道什么叫奥数扩展阅读
1、奥数在我国曾经被称为“趣味数学”
因为奥数题中,尤其是在小学奥数题中,许多都带有很强的趣味性和游戏性。这类奥数题,题面看似简单,几乎人人都能看明白;题意生动有趣,但很有迷惑性。
求解的方法很多,绝大多数人只会用笨办法做,麻烦、费时,而正确快捷的解答方法往往简单巧妙。
2、奥数依然是数学,是课堂数学的拓展
世界上最权威的分类法大概把数学分成了几十个大类,一百多个小类。一元一次方程、平面几何、三角函数、线性方程(组)、解析几何、立体几何、集合论、不等式、数列等等。
作为数学教育,当然应该以这些内容为主,因为它们是数学的核心方法和领域,但是这些内容就连初等数学的范畴也没有完全覆盖。
E. 什么是奥数
“奥数”是奥林匹克数学竞赛的简称。1934年和1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。
国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。有关专家认为,只有5%的智力超常儿童适合学奥林匹克数学,而能一路过关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。
近年来,我国各种以远远高于课堂数学教学内容为主的各种课外数学提高班、培训班纷纷冠以“奥数”的名号,使得“奥数”培训逐渐脱离奥赛选手选拔的轨道,凸显出泛大众化的特征。虽然不少知名数学家和数学教育工作者发出了谨防“奥数”走偏的呼声,但“奥数”成绩与中学升学之间的微妙关系使得“奥数”内涵的扩大化趋势难以阻挡。凡是各学校、团体主办的各种杯赛针对性极强的课外数学培训统统披上了“奥数”的外衣,脱离课本、强调技巧成了“奥数”的代名词。
1、“奥数”究竟学些什么?
奥数”究竟是什么?它和我们平时学的数学课有什么区别和联系?我想大多数的家长和老师都不一定很清楚,可能就觉得只有那些思路比较新、怪,难度比较大的所谓“难题”、“偏题”才是“奥数”。其实不然。
奥数仍然是属于数学这一门学科,我想这是毫无疑问的。奥数中当然也有和我们平时所学的课堂上的数学相联系的部分,是课堂内容的深化和提高;但是奥数中更多的是和课堂上的数学看起来不沾边的内容,那么这部分内容究竟是什么,又来自于哪里呢?
数学的范围是极其广泛的,世界上最权威的分类法大概把数学分成了几十个大类,一百多个小类。我们从小学高年级的一元一次方程开始算起,一直到高中毕业,在七、八年的时间里,所涉及的数学类别也就是平面几何、三角函数、线性方程(组)、解析几何、立体几何、集合论、不等式、数列等等。作为数学教育,当然应该以这些内容为主,因为它们是数学的核心方法和领域,但是这些内容就是连初等数学的范畴也没有完全覆盖。
那好了,什么是奥数?其实就是我们平常数学课上所不讲、也没有时间去讲的一些数学分支的基础内容,比如图论、组合数学、数论,以及重要的数学思想,比如构造思想、特殊化思想、化归思想等等。这些内容的选择是很科学的,因为这些领域的基本方法和简单应用是不需要专门的数学工具的,而且带有很强的趣味性和游戏性。这些方法对于培养学生的数学兴趣,拓展它们的思维和知识面自然是很有帮助的。
顺便说一句,其实奥数里面,特别是中低年级奥数中,有很多内容是来自于中国古代数学专着的方法和思想,比如“盈亏问题”,比如“鸡兔同笼”,还比如高年级或中学奥数中要介绍的“中国剩余定理”等等。我认为这些方法看似简单,但是其中的确凝聚了中国古代数学家的超凡智慧,并且与西方的数学方程思想很不一样,独辟蹊径,自成一派。我想这也是中华优秀文化遗产的一部分,学习它自然是很有裨益的。
我们在“奥数”的教学实践中,并不是一味的去追求难,追求怪,也一直是本着“打实基础,灵活运用”的目的在操作,主要拓展学生的思维,加深它们对一些数学中看似不起眼的常识、小结论的认识,比如乘法分配律可以用来解决对角线垂直的任意四边形面积问题,再比如等比数列求和与循环小数化分数的方法间其实存在着本质的联系,并且里面还涉及到了一点“构造”的思想等等,于平凡处见不平凡,化腐朽为神奇,让学生在“我怎么没想到”的感叹声中不断加深对数学的认识,在不知不觉中进步。
2、“奥数”适合什么样的学生学习?
在我看来,奥数主要是针对课堂上的数学学得相对比较扎实,学有余力且又对于数学有着一定兴趣的学生。
但同时也要看到,适合学奥数的学生之间也是有差别的,奥数学习也是必须要分层次、分难度,根据不同的学生安排不同的内容和难度,因人因地因时而宜的。我觉得难度的选择,最好是以学生上课能听懂,课下花点功夫就能基本掌握为准。另一方面,我也很不赞成本末倒置的做法,如果平时数学课上的内容暂时还都没有学得比较好的话,那么还是要以平时课堂的数学内容为主,要不然花时花力花钱还于事无补。
3、“奥数”不等于“提前学”
我看到网上有一篇名叫《小学奥数热过了头》的文章,作者是上海数学特级教师周继光老师。在周老师看来,奥数好像就变成了是“提前学”的代名词。他在该文章中这样说道:最近笔者在书城的奥数“书海”中随意买了一本《冲刺金牌——全国小学数学奥林匹克竞赛最新优秀试题精选与题解》,它几乎囊括了全国各地2000-2002年的小学数学竞赛题。我从中找出38道有关几何图形的试题,全部做了一遍,发现竟有30道题要用到初二以上的知识,如勾股定理、根式运算、比例线段、等积变换等才能解决。另有七道题也要用到初预、初一的有关知识才能解决。只有一道题可用小学数学知识解决。书中的代数试题也有类似情况。试想一下,把这些题目让一般的小学生去啃,不是为难他们吗?如此不恰当的超前训练不仅对学生的思维发展不利,而且会使绝大部分学生从此惧怕数学而远离数学,甚至厌恶数学。沉重的心理压力将会阻碍学生身心健康发展,对此不少老师与家长深为忧虑。
周老师以上这段话,我不敢苟同。首先,同底等高(或等底同高)的三角形面积相等这一点是小学四年级的内容,所谓的“等积变换”其实在小学奥数里也就是这么点内容,最多再深入一步,等高的三角形面积之比等于底之比,至于旋转变换、反射变换等都是没有的。比例也是小学的内容,当然上海小学的内容可能比别处少一些,因为它有个初中预科班,其实就相当于一般的小学六年级。全国小学数学竞赛是不能因为上海的特殊情况而减少大纲内容的,如果周老师非把这部分内容也认为是初中的话,那这个问题就真的说不清楚了;其次,线段的比例自然也是小学的内容,只要不是涉及到相似三角形或平行线分线段成比例定理即可,就我的教学实践来看,全国小学数学竞赛的几何题目基本上只要利用三角形面积的简单变换就能解决,顶多加上一点简单的一元一次方程或者字母表示数,这也都是小学五年级的内容。 至于勾股定理,一般只涉及到勾三股四弦五,并不要去真的计算什么平方,即使计算也都是好数字,什么根式运算是压根就不会出现的。笔者曾经精选几道竞赛题写过一篇文章《剖析小学几何》,其中就介绍了华杯赛中的一些难题,也只要用到小学的知识,只不过灵活多了。
“提前学”好不好?我也认为不好,没有必要。那么奥数里究竟有没有提前学的数学知识?有。不过占的比例很少,大部分奥数的内容我在本文的第一部分交待了,它和正统的数学课堂讲的内容是没有交集的,平时的数学课会讲抽屉原理吗?会讲哥底斯堡七桥问题吗?会讲中国古代的“鸡兔同笼”,“盈亏问题”吗?不讲。同时,我们在教学实践中,一直是避免把初中的内容来讲;什么绝对值、实数、代数式(当然最基本的平方差、完全平方六年级下学期还是要教的)、严密的几何论证等等都是不讲的。六年级涉及到的一些证明问题,也都是一些染色问题、抽屉原则等等,并没有提前涉及中学的几何代数证明。
下面说说方程,就我和学生的接触来看,大部分学生在小学学习字母表示数,一元一次方程的时候并没有真正理解什么是方程的思维方式。通过奥数的学习,他们认识上得到了提高,培养了良好的方程思维,也明白了列方程和解方程是完全可以分开的两个数学思维活动过程。当然,小学奥数对方程的要求要比小学课本上稍多一些,六年级上学期要求一元一次方程的灵活运用,下学期要求简单的二元一次方程组的求解,但是我们绝不会涉及到一元二次方程的求解和根式运算。
因此,奥数并不是“提前学”,更不是有些人说的“数学中的杂技”,它就是课堂外的数学,和课堂内的数学是主干与支干的关系,既是课堂的提高和深化,又是拓展视野的数学园地。所谓“提前学”带给学生们的种种负担与不良影响并不适用于“奥数”,至少是不适用于“奥数”中的绝大部分内容。
参考资料:网络
F. 什么叫奥数
奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。1934年和1935年,苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克。
国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。有关专家认为,只有5%的智力超常儿童适合学奥林匹克数学,而能一路过关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。2012年8月21日,北京采取多项措施坚决治理奥数成绩与升学挂钩。
奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用。
G. 邯郸育华中学免费生招收多少名考试以奥数为主吗什么时间考试,免费生和普通招生考一次还是二次
免费招生
前30名左右,以两门功课加起来的成绩看录取线。今年是4月底左右,分批考,有初试和复试。不知道你说的
免费生是什么意思,如果是学校老师推荐的,只考复试,再根据成绩看掏钱的价位,自己报名的考两次,如果初试没过复试就不能参加了
H. 什么叫奥数
“奥数”的全称是奥林匹克数学竞赛,在世界上有着悠久的历史,1934年-1935年,前苏联就开始在列宁格勒和莫斯科举办中学数学竞赛,并冠于奥林匹克数学竞赛的名称,而第一届国际奥林匹克数学竞赛于1959年在布加勒斯特举办。
奥数可以激发孩子对数学学习的兴趣,培养学生简单推理能力和解决问题的灵活性,是一种思维方式的训练,它用一种特殊的思维方式和解决问题的方法。
世界上很多国家都有国内的奥数竞赛,国际间的奥数竞赛也开展得如火如荼。奥数在其它一些国家并不表现出“病入膏肓”,相反,奥数成了一些国家发现杰出数学人才的平台。1894年,匈牙利通过决议准备数学竞赛,这一赛事的正面作用是明显的,发现了一大批有潜力的人才,其中包括着名力学家冯·卡门,着名经济学家、1994年因博弈论而获诺贝尔经济学奖的豪尔绍尼等鼎鼎大名的人物。
中国的奥数教育问题很多,一方面存在着片面追求难、怪、偏等有违教育规律的问题,另一方面,一些学校规定奥数获奖学生可以优先获得教育资源也在一定程度上损害了教育公平,奥数教育“特权”的存在,也直接导致一些家长和老师对奥数“顶礼膜拜”,却丝毫不顾及学生是否对奥数有兴趣,不管有没有兴趣,都得跟着奥数的“魔棒”转。
I. 什么叫奥数
奥数就是有趣味的数学、有较大难度的数学、有好方法解决的数学、用来竞赛选拔的数学。
奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。
奥数中有我们平常数学课上所不讲、也没有时间去讲的一些数学分支的基础内容,比如图论、组合数学、数论等等,还有很重要的数学思想,比如构造思想、特殊化思想、化归思想等等。
涉猎这类知识,有利于培养学生对数学的兴趣,拓展他们的思维,增强思维的条理性,它们是对课堂教学的补充与扩展。
奥数题普遍比较难。既然是为竞赛服务,当然应该有难度才行,它们是普通课堂内容的深化和提高,不同的试题有多种不同的视角,需要有较深入的分析才可解答,这类考题可以考查学生对于基础知识的掌握程度。
(9)免费知道什么叫奥数扩展阅读
1、奥数在我国曾经被称为“趣味数学”
因为奥数题中,尤其是在小学奥数题中,许多都带有很强的趣味性和游戏性。这类奥数题,题面看似简单,几乎人人都能看明白;题意生动有趣,但很有迷惑性。
望采纳!