‘壹’ 主板维修中的时序 时钟是什么意思
时序顾名思义,就是信号完成的时间顺序,就是哪个信号先产生,哪个信号后产生的时间顺序,简称时序, 时钟在电脑主板中是一个电路,时钟电路的作用是产生不同频率的时钟信号提供给主板上个个IC插槽不同的时钟频率,南北桥,CPU,内存,显卡,网卡,声卡,这些都需要不同的时钟频率才可以工作,而时钟电路就是产生时钟频率给这些电路提供不同时钟频率让他们可以工作。。
主板的工作流程 开机, 供电, 时钟, 复位, BIOS。 亮机。
‘贰’ 关于电脑配内存的问题。
DDR是一种继SDRAM后产生的内存技术,DDR,英文原意为“DoubleDataRate”,顾名思义,就是双数据传输模式。之所以称其为“双”,也就意味着有“单”,我们日常所使用的SDRAM都是“单数据传输模式”,这种内存的特性是在一个内存时钟周期中,在一个方波上升沿时进行一次操作(读或写),而DDR则引用了一种新的设计,其在一个内存时钟周期中,在方波上升沿时进行一次操作,在方波的下降沿时也做一次操作,之所以在一个时钟周期中,DDR则可以完成SDRAM两个周期才能完成的任务,所以理论上同速率的DDR内存与SDR内存相比,性能要超出一倍,可以简单理解为100MHZ DDR=200MHZ SDR。
DDR内存不向后兼容SDRAM
DDR内存采用184线结构,DDR内存不向后兼容SDRAM,要求专为DDR设计的主板与系统。
DDR-II内存将是现有DDR-I内存的换代产品,它们的工作时钟预计将为400MHz或更高(包括现代在内的多家内存商表示不会推出DDR-II 400的内存产品)。从JEDEC组织者阐述的DDR-II标准来看,针对PC等市场的DDR-II内存将拥有400-、533、667MHz等不同的时钟频率。
高端的DDR-II内存将拥有800-、1000MHz两种频率。DDR-II内存将采用200-、220-、240-针脚的FBGA封装形式。最初的DDR-II内存将采用0.13微米的生产工艺,内存颗粒的电压为1.8V,容量密度为512MB。 DDR-II将采用和DDR-I内存一样的指令,但是新技术将使DDR-II内存拥有4到8路脉冲的宽度。DDR-II将融入CAS、OCD、ODT等新性能指标和中断指令。DDR-II标准还提供了4位、8位512MB内存1KB的寻址设置,以及16位512MB内存2KB的寻址设置。
DDR-II内存标准还包括了4位预取数(pre-fetch of 4 bits)性能,DDR-I技术的预取数位只有2位。
DDR3的市场导入时间预计为2006年下半,最高数据传输速度标准较达到1600Mbps。不过,就具体的设计来看,DDR3与DDR2的基础架构并没有本质的不同。从某种角度讲,DDR3是为了解决DDR2发展所面临的限制而催生的产物。
由于DDR2的数据传输频率发展到800MHz时,其内核工作频率已经达到200MHz,因此再向上提升较为困难,这就需要采用新的技术来保证速度的可持续发展性。另一方面,也是由于速度提高的缘故,内存的地址/命令与控制总线需要有全新的拓朴结构,而且业界也要求内存要具有更低的能耗,所以,DDR3要满足的需求就是:
更高的外部数据传输率
更先进的地址/命令与控制总线的拓朴架构
在保证性能的同时将能耗进一步降低
为了满足上述要求,DDR3在DDR2的基础上采用了以下新型设计:
8bit预取设计,DDR2为4bit预取,这样DRAM内核的频率只有接口频率的1/8,DDR3-800的核心工作频率只有100MHz
采用点对点的拓朴架构,减轻地址/命令与控制总线的负担
采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。
下面我们通过DDR3与DDR2的对比,来更好的了解这一未来的DDR SDRAM家族的最新成员。
DDR3与DDR2的不同之处
1、逻辑Bank数量
DDR2 SDRAM中有4Bank和8Bank的设计,目的就是为了应对未来大容量芯片的需求。而DDR3很可能将从2Gb容量起步,因此起始的逻辑Bank就是8个,另外还为未来的16个逻辑Bank做好了准备。
2、封装(Packages)
DDR3由于新增了一些功能,所以在引脚方面会有所增加,8bit芯片采用78球FBGA封装,16bit芯片采用96球FBGA封装,而DDR2则有60/68/84球FBGA封装三种规格。并且DDR3必须是绿色封装,不能含有任何有害物质。
3、突发长度(BL,Burst Length)
由于DDR3的预取为8bit,所以突发传输周期(BL,Burst Length)也固定为8,而对于DDR2和早期的DDR架构的系统,BL=4也是常用的,DDR3为此增加了一个4-bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。
3、寻址时序(Timing)
就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2至5之间,而DDR3则在5至11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0至4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数——写入延迟(CWD),这一参数将根据具体的工作频率而定。
4、新增功能——重置(Reset)
重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界已经很早以前就要求增这一功能,如今终于在DDR3身上实现。这一引脚将使DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有的操作,并切换至最少量活动的状态,以节约电力。在Reset期间,DDR3内存将关闭内在的大部分功能,所以有数据接收与发送器都将关闭。所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。
5、新增功能——ZQ校准
ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(ODCE,On-Die Calibration Engine)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令之后,将用相应的时钟周期(在加电与初始化之后用512个时钟周期,在退出自刷新操作后用256时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。
6、参考电压分成两个
对于内存系统工作非常重要的参考电压信号VREF,在DDR3系统中将分为两个信号。一个是为命令与地址信号服务的VREFCA,另一个是为数据总线服务的VREFDQ,它将有效的提高系统数据总线的信噪等级。
7、根据温度自动自刷新(SRT,Self-Refresh Temperature)
为了保证所保存的数据不丢失,DRAM必须定时进行刷新,DDR3也不例外。不过,为了最大的节省电力,DDR3采用了一种新型的自动自刷新设计(ASR,Automatic Self-Refresh)。当开始ASR之后,将通过一个内置于DRAM芯片的温度传感器来控制刷新的频率,因为刷新频率高的话,消电就大,温度也随之升高。而温度传感器则在保证数据不丢失的情况下,尽量减少刷新频率,降低工作温度。不过DDR3的ASR是可选设计,并不见得市场上的DDR3内存都支持这一功能,因此还有一个附加的功能就是自刷新温度范围(SRT,Self-Refresh Temperature)。通过模式寄存器,可以选择两个温度范围,一个是普通的的温度范围(例如0℃至85℃),另一个是扩展温度范围,比如最高到95℃。对于DRAM内部设定的这两种温度范围,DRAM将以恒定的频率和电流进行刷新操作。
8、局部自刷新(RASR,Partial Array Self-Refresh)
这是DDR3的一个可选项,通过这一功能,DDR3内存芯片可以只刷新部分逻辑Bank,而不是全部刷新,从而最大限度的减少因自刷新产生的电力消耗。这一点与移动型内存(Mobile DRAM)的设计很相似。
9、点对点连接(P2P,Point-to-Point)
这是为了提高系统性能而进行了重要改动,也是与DDR2系统的一个关键区别。在DDR3系统中,一个内存控制器将只与一个内存通道打交道,而且这个内存通道只能一个插槽。因此内存控制器与DDR3内存模组之间是点对点(P2P,Point-to-Point)的关系(单物理Bank的模组),或者是点对双点(P22P,Point-to-two-Point)的关系(双物理Bank的模组),从而大大减轻了地址/命令/控制与数据总线的负载。而在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本电脑)、FB-DIMM2(服务器)之分,其中第二代FB-DIMM将采用规格更高的AMB2(高级内存缓冲器)。不过目前有关DDR3内存模组的标准制定工作刚开始,引脚设计还没有最终确定。
除了以上9点之外,DDR3还在功耗管理,多用途寄存器方面有新的设计,但由于仍入于讨论阶段,且并不是太重要的功能,在此就不详细介绍了。下面我们来总结一下DDR3与DDR2之间的对比:
DDR2与DDR3规格对比,业界认为DDR3-800将被限定于高端应用市场,这有点像当今DDR2-400的待遇,预计DDR3在台式机上将以1066MHz的速度起步
从整体的规格上看,DDR3在设计思路上与DDR2的差别并不大,提高传输速率的方法仍然是提高预取位数。但是,就像DDR2和DDR的对比一样,在相同的时钟频率下,DDR2与DDR3的数据带宽是一样的,只不过DDR3的速度提升潜力更大。所以初期我们不用对DDR3抱以多大的期望,就像当初我们对待DDR2一样。当然,在能耗控制方面,DDR3显然要出色得多,因此将可能率先受到移动设备的欢迎,就像最先欢迎DDR2内存的不是台式机,而是服务器一样。在CPU外频提升最迅速的PC台式机领域,DDR3未来也将经历一个慢热的过程
‘叁’ 电脑出现什么情况是时钟电路故障
过程?不亮机后就打开机箱拆出主板,安上cpu假负载,首先就测cpu四大供电咯,就测出时钟和复位电压时有是无,cpu主供电和pg供电正常,内存供电、时钟正常,pci的12v、5v,3.3v复位都正常,请教是哪里出了问题。。。
‘肆’ 电脑内存条是什么作用
一、内存的作用与分类
内存是电脑中的主要部件,它是相对于外存而言的。我们平常使用的程序,如Windows98系统、打字软件、游戏软件等,一般都是安装在硬盘等外存上的,但仅此是不能使用其功能的,必须把它们调入内存中运行,才能真正使用其功能,我们平时输入一段文字,或玩一个游戏,其实都是在内存中进行的。通常我们把要永久保存的、大量的数据存储在外存上,而把一些临时的或少量的数据和程序放在内存上。
内存分为DRAM和ROM两种,前者又叫动态随机存储器,它的一个主要特征是断电后数据会丢失,我们平时说的内存就是指这一种;后者又叫只读存储器,我们平时开机首先启动的是存于主板上ROM中的BIOS程序,然后再由它去调用硬盘中的Windows98或Windows95系统,ROM的一个主要特征是断电后数据不会丢失。
二、内存发展简史
起初,电脑所使用的内存是一块块的IC,我们必须把它们焊接到主机板上才能正常使用,一旦某一块内存IC坏了,必须焊下来才能更换,这实在是太费劲了。后来,电脑设计人员发明了模块化的条装内存,每一条上集成了多块内存IC,相应地,在主板上设计了内存插槽,这样,内存条就可随意拆卸了,从此,内存的维修和扩充都变得非常方便。
根据内存条上的引脚多少,我们可以把内存条分为30线、72线、168线等几种。30线与72线的内存条又称为单列存储器模块SIMM,168线的内存条又称为双列存储器模块DIMM。目前30线内存条已经没有了;前两年的流行品种是72线的内存条,其容量一般有4兆、8兆、16兆和32兆等几种;目前市场的主流品种是168线内存条,168线内存条的容量一般有16兆、32兆、64兆、128兆等几种,一般的电脑插一条就OK了,不过,只有基于VX、TX、BX芯片组的主板才支持168线的内存条。
三、内存的性能指标
评价内存条的性能指标一共有四个:
(1) 存储容量:即一根内存条可以容纳的二进制信息量,如目前常用的168线内存条的存储容量一般多为32兆、64兆和128兆。
(2) 存取速度:即两次独立的存取操作之间所需的最短时间,又称为存储周期,半导体存储器的存取周期一般为60纳秒至100纳秒。
(3) 存储器的可靠性:存储器的可靠性用平均故障间隔时间来衡量,可以理解为两次故障之间的平均时间间隔。
(4) 性能价格比:性能主要包括存储器容量、存储周期和可靠性三项内容,性能价格比是一个综合性指标,对于不同的存储器有不同的要求。
四、什么是EDO和SDRAM
前面我们已经按引脚数的多少把内存条分为30、72和168线等几种,其实,它们在结构和性能上还有着本质的区别。
譬如,72线内存条是一种EDO内存,而现今主流的168线内存条几乎清一色又都是SDRAM内存;目前,EDO内存的存取速度基本保持在60纳秒左右,能够适应75兆赫兹的外频,但跑83兆赫兹则有点勉为其难了;而SDRAM内存的存取速度一般能达到10纳秒左右,能够适应100兆赫兹以上的外频。所以从97年底起EDO内存已逐步被SDRAM所取代,至今,几乎已无人再用EDO来装机了,只有升级扩充旧电脑内存时还用得着它。
‘伍’ 时钟的工作原理
主板时钟电路工作原理
时钟电路工作原理:
DC3.5V电源经过二极管和L1(L1可以用0Ω电阻代替)进入分频器后,分频器开始工作,和晶体一起产生振荡。在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450-700Ω之间。在它的两脚各有1V左右的电压,由分频器提供。晶体两脚产生的频率总和是14.318M。
总频OSC在分频器出来后送到PCI槽的B16脚和ISA槽的B30脚(这两个脚叫OSC测试脚)。也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC的线上还有电容,总频线的对地电阻在450-700Ω之间。总频的时钟波形幅度一定要大于2V。
如果开机数码卡上的OSC灯不亮,先查晶体两脚的电压和波形。有电压有波形,在总频线路正常的情况下,为分频器坏。若无电压无波形,在分频器电源正常的情况下,为分频器坏;有电压无波形,为晶体坏。
没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率,有了总频,南、北桥、内存、CPU、CACHE、I/O上不一定有频率。总频一旦正常,可以说明晶体和分频器基本正常,主要是晶体的振荡电路已经完全正常,反之就不正常。
当分频产生后,分频器开始分频,R2经分频器过来的频率送到南桥,在南桥处理过后送到PCI槽的B39脚(PCICLK)和ISA槽的B20脚(SYSCLK),这两脚叫系统时钟测试脚。这个测试脚可以反映主板上所有的时钟是否正常。系统时钟的波形幅度一定要大于1.5V。
在主板上,RST和CLK都是由南桥处理的。若总频正常,如果RST和CLK都没有,在南桥电源正常的情况下,为南桥坏。
主板不开机,RST灯不正常,要先查总频。如果在数码卡上有OSC灯和RST灯,没有CLK灯的话,先查R3输出的分频有没有。若没有,在线路正常的情况下,一般是分频器坏。如果CLK的波形幅度不够,那得先查R3输出的幅度够不够。若不够,一般为分频器坏。若够,查南桥的电压够不够。若够,南桥坏;不够,查电源电路。
R1将分频器分过来的频率送给CPU的第6脚(在CPU上RST较旁边,见图纸),这个脚为CPU时钟脚。CPU如果没有时钟,是绝对不会工作的。CPU的时钟有可能由北桥提供。如果南桥上有CLK信号而CPU上没有,就可能是分频器或南桥坏。
R4为I/O提供频率。在主板上,时钟线比AD线要粗一些,并带有弯曲。频率发生偏移,是晶体电容所导致的。它的现象是刚开机就死机,运行98出错,分频器本身坏了,会导致频率上不去,和晶体无关。CPU的两边为控制处理(位置见图),控制南桥和分频器,当频率发生偏移,会自动调整。
当CACHE短路会引起不开机,开路不会导致不开机故障。如果不读内存(C1、C6、D3、D4),多为CACHE内部或数据线坏。如果应显示却无显示(2A、0D),一般也是CACHE坏。开机即死机,也是CACHE坏。进入C盘慢或者运行windows死机,也多为CACHE坏.若不进C盘,那一般为TAG或其电路有故障。
‘陆’ 电脑内存条是不是通用的
不是通用的。
内存条是CPU可通过总线寻址,并进行读写操作的电脑部件。电脑上的内存条是不通用的,选择内存条的时候,需要查清主板支持的内存条的种类,在电脑上安装主板支持的内存条。
内存条分为DDR DDR2 DDR3三类,每个电脑的主板支持的种类不一样。用户在安装时,需选择合适的内存条进行安装。
(6)电脑内存时钟电路扩展阅读:
内存条的性能指标:
1、存储容量:即一根内存条可以容纳的二进制信息量,如常用的168线内存条的存储容量一般多为32兆、64兆和128兆。而DDRII3普遍为1GB到8GB。
2、存取速度(存储周期):即两次独立的存取操作之间所需的最短时间,又称为存储周期,半导体存储器的存取周期一般为60纳秒至100纳秒。
3、存储器的可靠性:存储器的可靠性用平均故障间隔时间来衡量,可以理解为两次故障之间的平均时间间隔。
4、性能价格比:性能主要包括存储器容量、存储周期和可靠性三项内容,性能价格比是一个综合性指标,对于不同的存储器有不同的要求。
‘柒’ 计算机时钟的工作原理
简单来说是主板的CMOS电池(纽扣电池)给BIOS供电,
原理是:
时钟电路工作原理:3.5电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450---700欧之间。在它的两脚各有1V左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M。
总频(OSC)在分频器出来后送到PCI槽的B16脚和ISA的B30脚。这两脚叫OSC测试脚。也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC线上还电容。总频线的对地阻值在450---700欧之间,总频时钟波形幅度一定要大于2V电平。如果开机数码卡上的OSC灯不亮,先查晶体两脚的电压和波形;有电压有波形,在总频线路正常的情况下,为分频器坏;无电压无波形,在分频器电源正常情况下,为分频器坏;有电压无波形,为晶体坏。
没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率。有了总频,也不一定有频率。总频一定正常,可以说明晶体和分频器基本上正常,主要是晶体的振荡电路已经完全正常,反之就不正常。
当总频产生后,分频器开始分频,R2将分频器分过来的频率送到南桥,在南桥处理过后送到PCI槽B8和ISA的B20脚,这两脚叫系统测试脚,这个测试脚可以反映主板上所有的时钟是否正常。系统时钟的波形幅度一定要大于1.5V,这两脚的阻值在450---700欧之间,由南桥提供。
在主板上RESET和CLK者是南桥处理的,在总频正常下,如果RESET和CLK都没有,在南桥电源正常情况下,为南桥坏。主板不开机,RESET不正常,先查总频。在主板上,时钟线比AD线要粗一些,并带有弯曲。
检测方法:
1.CMOS供电压是否正常
2.14.318晶体是否起振