1. 阿里云服务器怎么做端口映射
1、WWW服务的重定向
打开管理工具中的Internet服务管理器,进入“Internet信息服务”对话框,选择Web站点名称,例如:“默认Web站点”,查看其属性,在属性页面的“主目录”标签下,我们可以设置WWW服务器的主目录位置。设定主目录为“另一计算机上的共享位置”,则可以在“网络目录”栏目内,以“\ {服务器}{共享名}”格式填写局域网内部的WWW服务器上已经设为共享的主目录,例如:\Server6www。
2、FTP服务的重定向
与WWW服务的重定向相似,打开管理工具中的Internet服务管理器,进入“Internet信息服务”对话框,选择FTP站点名称,例如:“默认FTP站点”,查看其属性,在属性页面的“主目录”标签下,我们可以设置FTP服务器的主目录位置。
如果操作系统为Windows NT/Windows 2000/Windows XP,第一次运行时选择Start,PortTunnel会自动以服务方式运行。点击[Add]按钮添加条目,点击[Edit]按钮编辑现有条目,点击 [Delete]按钮删除条目。“新建/编辑”条目的界面见下图。
PortTunnel专门针对HTTP、FTP、SMTP服务的端口映射,提供了较多的参数设置,在相应的标签菜单下调整。此外,PortTunnel还提供了安全性设置和日志、统计等功能。
2. sp映射怎么调整图片尺寸
调整图片尺寸步骤:
1、打开sp映射软件。
2、点击设置按钮。
3、跳出设置框。
4、勾选适配屏幕缩放比例即可。
3. 服务器怎么做端口映射
1、首先打开浏览器,输入路由器地址192.168.1.1,如果有做更改请输入更改后的地址,输入账号密码登陆路由器。
4. 激光点云预处理研究概述
3D点云数据的预处理是利用有效点云信息进行三维重建及障碍物感知的基础,是3D点云配准、3D点云拼接环节的前提。一般的 3D 点云预处理工作包括地面点云去除、点云滤波和点云分割。在三维点云数据处理过程中,点云数据离群点、噪声点的剔除以及点云数据的配准不仅是点云数据处理中的重要环节,也是后期对点云数据进行特征提取完成检测环节的基础。
在进行目标物体分割时,将离散的三维数据点聚类的判断依据为点与点之间距离是否接近,而在激光雷达点云数据中,有很大一部分数据属于地面点数据,并且地面点云呈现为纹理状,这对后续障碍物点云的分类,识别带来干扰,如果不将这些地面点数据去除,在进行目标物体分割时会导致分割算法失效,因此需要先进行过滤。所以,地面点云数据去除是减少数据量以及提高分割算法准确度的有效手段。
因此为了提高去除地面点云算法的准确性和鲁棒性,许多学者提出了大量研究方法,这些方法主要有以下两类:基于栅格图方法的地面去除研究、基于三维激光雷达原始扫描线数据的地面去除研究。
通过激光雷达扫描得到的点云包含大部分地面点,常用的栅格图方法地面滤除点云方法有栅格高度差法、法向量方法和高度法。栅格高度法首先根据栅格大小生成网格,计算每个网格最低点与最高点的高度差,比较h与预设高度差阈值大小,对网格进行分类,最后根据网格对网格内的点进行分类。法向量法是基于计算出地面法向量为竖直向下或向上的假设,即地面点法向量值为(0,0,1)或(0,0,-1)。方法过程是计算点法向量并设定点分类的法向量阈值。高度法去除地面点云,是最常用且耗时最小的方法。根据激光雷达安装位置与姿态,可以根据设定阈值直接将点云分为地面点和障碍物点。
基于栅格图的点云处理方式是通过将三维点云数据投影到地面,建立多个栅格单元,采用连通区域标记算法或者邻域膨胀策略对目标进行聚类,这类方法被广泛应用在激光雷达三维建模中。一是因为三维点云向二维平面投影过程极大地压缩了数据量,能够提高算法处理的实时性;二是因为点云向栅格图的映射,将复杂的三维点云处理问题转化为图像处理问题,可以使用成熟的图像处理相关算法,提高了算法处理的时间效率。栅格法简单可靠、计算效率高,但是栅格单元参数固定且往往凭经验确定,远距离目标点云较为稀疏往往会出现过分割,而近距离目标点云较为稠密又会出现欠分割,算法严重依赖于阈值参数的选择,且往往需要逐帧进行分析,必然损失部分实时性。
由于三维激光雷达的原始三维数据包含了详细的空间信息,所以也可以用来进行相关点云数据处理。激光扫描线在地面和障碍物形成的角度值存在显着的不同,可作为分离地面点的重要依据。激光雷达中的多个激光器水平扫描周围环境中的物体,在两个相邻物体之间形成的角度很小,而同一物体的角度值很大。这启示了我们可以充分利用这一特性,大于角度阈值可认为这两点是同一物体,较好地处理了相邻目标欠分割的问题。通过将非地面点云分割为不同物体,然后进行目标物体的识别,可以为无人车提供更加详细的车辆、行人等障碍物信息,在运动中避免与不同类型的障碍物发生碰撞并进行及时避让。地面点云欠分割会导致目标漏检,过分割又会对后续的识别等操作带来影响。利用激光雷达产生点云的几何特性,研究人员提出了多种特征构建的方法,基于三维激光雷达原始扫描线数据的地面去除研究属于其中较为常用的方法。
激光雷达在采集三维点云数据的过程中,会受到各类因素的影响,所以在获取数据时,就会出现一些噪声。其实在实际工作中除了自身测量的误差外,还会受到外界环境的影响如被测目标被遮挡,障碍物与被测目标表面材质等影响因素;另外,一些局部大尺度噪声由于距离目标点云较远,无法使用同一种方法对其进行滤波。
噪声就是与目标信息描述没有任何关联的点,对于后续整个三维场景的重建起不到任何用处的点。但是在实际的点云数据处理算法中,把噪声点和带有特征信息的目标点区别开来是很不容易的,去噪过程中由于许多外在因素总是不可避免的伴随着一些特征信息的丢失。一个好的点云滤波算法不仅实时性要求高,而且在去噪的同时也要很好的保留模型的特征信息[88]。就需要把点云数据的噪声点特征研究透彻,才能够提出效果更好的去噪算法。
点云数据是一种非结构化的数据格式,激光雷达扫描得到的点云数据受物体与雷达距离的影响,分布具有不均匀性,距离雷达近的物体点云数据分布密集,距离雷达远的物体点云数据分布稀疏。此外,点云数据具有无序和非对称的特征,这就导致点云数据在数据表征时缺乏明确统一的数据结构,加剧了后续点云的分割识别等处理的难度。神经网络作为一种端到端的网络结构,往往处理的数据是常规的输入数据,如序列、图像、视频和3D数据等,无法对点集这样的无序性数据直接进行处理,在用卷积操作处理点云数据时,卷积直接将点云的形状信息舍弃掉,只对点云的序列信息进行保留。
点云滤波是当前三维重建技术领域的研究热点,同时也是许多无人驾驶应用数据处理过程中至关重要的一步。3D点云滤波方法主要可以分为以下三类,主要包括基于统计滤波、基于邻域滤波以及基于投影滤波。
由于统计学概念特别符合点云的特性,因此,许多国内外学者都将统计学方法引用到点云滤波技术中,Kalogerakis 等人将一种稳健统计模型框架运用到点云滤波中,取得了非常好的滤波效果。在这个统计模型框架中,通过使用最小二乘迭代方法来估计曲率张量,并在每次迭代的时候根据每个点周围的领域来为样本分配权重,从而细化每个点周围的每一个邻域。然后利用计算获得的曲率以及统计权重来重新校正正态分布。通过全局能量的最小化并通过计算出的曲率和法线来把离群点去掉,并且能较好的保持点云的纹理特征。
基于邻域的点云滤波技术,就是通过使用一种相似性度量的方法来度量点和其他周围邻域对滤波效率与结果影响比较大点的相似性,从而来确定滤波点的位置。一般来说,可以通过点云的位置、法线和区域位置来度量其相似性。1998年,Tomasi等人将双边滤波器扩展到 3D 模型去噪,由于双边滤波器具有维持边缘平滑的特点,所以在除去点云数据噪声的同时也能较好的保持细节。但是,由于该方法是通过一个网格生成的过程来去噪的,而在生成网格的过程就会引入额外的噪声。相比较于规则格网、不规则三角网等数据结构,体元是真3D的结构并且隐含有邻域关系,能够有效的防止生成网格的过程中引入噪声,但该方法的需要设置的参数比较多,不能满足实际工业运用。
基于投影滤波技术通过不同的投影测量来调整点云中每个点的位置,从而实现噪声点云的去除。但是,如果输入的点云特别不均匀,经过局部最优投影处理后的点云将变得更散乱。孙渡等人提出了一种基于多回波及 Fisher 判别的滤波算法。首先结合格网划分思想划分点云网格,在每个网格内,通过点云数据的回波次数和强度进行划分,分出待定的样本;其次,利用Fisher判别的分析法将点云投影到一维空间内,通过判定临界值将植被点云与地面点云分离,实现陡坡点云的滤波,但是,该方法只针对点云中含有回波强度的属性才有效,对于不包含回波强度信息的点云,该方法失去作用。
为弥补点云本身的无序性、不对称性、非结构化和信息量不充分等缺陷,在对点云进行特征识别及语义分割等操作之前,需先对点云进行数据形式的变换操作。常用的点云形式变换方法有网格化点云、体素化点云、将点云进行球面映射等。
体素化是为了保持点云表面的特征点的同时滤除不具备特征的冗余的点云数据。由于常用的法向量计算取决于相邻点的数量,并且两个云点的分辨率也不同。所以具有相同体素大小的体素化就是为了在两个不同分辨率的点云中生成等效的局部区域。在实际进行点云配准算法的过程中,由于用于配准的源点云数据与目标点云数据的数量比较庞大、点云密集,并且这些原始点云数据中含有许多点云对于描述物体形状特征没有任何作用的点,如果使用算法直接对源点云与目标点云进行配置的话,整个过程将耗费大量时间,所以必须对点云进行下采样的同时仍保留住可以体现形状轮廓特征的那部分点云。
由于点云本身的稀疏性、无序性和非均匀分布的特点,在利用深度全卷积神经网络结构对激光雷达点云数据进行语义分割时,端到端的卷积神经网络无法直接对无序排布点云进行操作。为使端到端的神经网络在无序性分布的点云数据上具有通用性,需先对点云数据进行映射,常见的投影方式有基于平面的投影、基于圆柱面的投影以及基于球面的点云投影方式。
参考:
周天添等(基于深度神经网络的激光雷达点云语义分割算法研究)
李宏宇(激光雷达的点云数据处理研究)
范小辉(基于激光雷达的行人目标检测与识别)
5. 三维建模基本步骤
三维建模基本步骤大体上有三种:第一种方式利用三维软件建模;第二种方式通过仪器设备测量建模;第三种方式利用图像或者视频来建模。具体的建议咨询下翼狐网,翼狐网在线灵活学习,不受地域时间限制。【进入官网,立即领取¥600 新人专属大礼包 0元体验VIP特权】
制作三维建模的软件有SoftImage, Maya,UG以及AutoCAD等等。它们的共同特点是利用一些基本的几何元素,如立方体、球体等,通过一系列几何操作,如平移、旋转、拉伸以及布尔运算等来构建复杂的几何场景。利用建模构建三维模型主要包括几何建模、行为建模、物理建模、对象特性建模以及模型切分等。其中,几何建模的创建与描述,是虚拟场景造型的重点。
想要了解更多关于三维建模的信息,推荐咨询翼狐。翼狐网自2011年上线以来,秉持工匠精神,专注设计教育,精选优质、系统、实用的课程,开发大师课,与国内外资深讲师合作的教程,立足前沿技术,将某一领域的内容进行系统讲解,给用户提供完整的、有体系的学习内容。翼狐网创办特训营,针对用户的短期综合提升,翼狐网特推出特训营,直播+录播、一学一练的学习方式,迅速提升专业能力!
6. 把变换型数据流图映射成软件结构图
这两种典型的结构分别可通过变换分析和事务分析技术,导出变换型和事务型初始的模块结构图。这两种方法的思想是首先设计顶层模块,自顶向下逐步细化,最后得到一个满足数据流图所表示的用户要求的系统的模块结构图,即系统的物理模型。
通常在数据流图中多股数据流的汇合处往往是系统的主加工。若没有明显的汇合处,则可先确定哪些数据流是逻辑输入和逻辑输出,从而获得主加工。
(6)点云映射软件映射过程操作图片扩展阅读:
注意事项:
1、数据流反映能用计算机处理的数据,并不是实物,因此对目标系统的数据流图一般不要画物质流。
2、每个加工至少有一个输入数据流和一个输出数据流,反映出此加工数据的来源与加工的结果。
3、编号:如果一张数据流图中的某个加工分解成另一张数据流图时,则上层图为父图,直接下层图为子图。子图及其所有的加工都应编号。
4、父图与子图的平衡。子图的输入输出数据流同父图相应加工的输入输出数据流必须一致,此即父图与子图的平衡。
7. 如何将一部电脑的硬盘映射到另一部电脑
具体方法如下:
一、通过命令的方式映射共享文件夹到本地磁盘
1、用命令查看本地共享开始→运行→cmd,输入net share
2、 用命令查看远程共享(当然也可以直接在网上邻居或在地址栏输入电脑IP地址进行查看)
net use \\远程ip地址\ipc$ 对方密码/user:对方用户名
net view \\远程ip地址
3、使用命令设置共享net share admin$net share ipc$net share c$=c:net share e$=e:
4、使用命令删除共享Net share admin$ /delnet share c$ /del5、使用命令将远端地共享文件夹映射成本地磁盘net use z:\\远程ip地址\共享文件夹名
二、使用图形界面将远端地共享文件夹映射成本地磁盘
1、启动“Windows资源管理器”(双击打开“我的电脑”即可)。
2、在“工具”菜单上,单击“映射网络驱动器”。
3、在“驱动器”框中,单击映射驱动器要使用的驱动器号,比如选择“Z:”。在此,不可以使用计算机当前已使用的任何驱动器号。
4. 在“文件夹”框中,使用UNC(Universal Naming Conversion,通用命名约定)格式键入要连接的共享位置的名称,该格式形式为:\\计算机名\共享名。其中,“计算机名”是你试图连接的计算机名称,“共享名”是该计算机上的共享文件夹的名称。或者,也可以可单击“浏览”按钮,然后查找要连接到的计算机、该计算机上的共享位置以及该共享中的子文件夹。
5. 单击“完成”按钮。
现在,在“Windows资源管理器”中的文件夹窗格中,就可以看到所创建的映射驱动器(共享文件夹)以及计算机上的所有其他驱动器了。要断开网络驱动器,请在“Windows资源管理器”窗口的“工具”菜单上单击“断开网络驱动器”命令即可。
8. 手机映射怎么设置
1、在PC端登录一次花生壳即可,随后用手机关注花生壳微信公众号,绑定账号。
2、绑定成功后,在底部导航栏中点击【我】——【花生壳管理】即可进入管理页面,在域名列表中,点击【下拉】操作按钮,显示有内网映射、关闭以及域名诊断三个功能。
9. 内网如何设置端口映射
http://jingyan..com/article/cbf0e5009c2a332eaa289398.html
一 . 端口映射的定义:
端口映射就是将外网主机的IP地址的一个端口映射到内网中一台机器,提供相应的服务。当用户访问该IP的这个端口时,服务器自动将请求映射到对应局域网内部的机器上。端口映射有动态和静态之分。
二 . 下面分别对在路由器,nat123,花生壳下如何做端口映射做介绍:
1. 路由器:
如内网192.168.1.101是WEB服务器,TP-LINK系列路由器的默认管理地址为192.168.0.1,账号admin密码admin 登录到路由器的管理界面,点击路由器的转发规则—虚拟服务器—添加新条目(如图)。
端口映射设置如下:服务端口号填写80,,IP地址填写内网WEB服务器的IP地址192.168.1.101,协议设置为TCP,若对端口协议类型不了解可以设置选择为ALL,代表所有(包括TCP和UDP),状态必须设置为生效。常用服务端口号,是作为一种帮助提示的作用,不需要选择,然后单击保存,映射成功!
2 . nat123下的设置方法:
登录软件,在主面板/端口映射列表/添加端口映射。
添加编辑映射时,选择需要映射的应用类型。如发布网站,选择80网站。
内网地址端口:对应内网应用的访问地址端口。本机地址可以使用localhost等格式。
外网地址端口:希望外网可以访问的域名地址和端口。
注意:映射后,无需再设置路由映射。映射后的外网地址端口=映射前的内网地址端口。上面的路由映射步骤是对路由器映射做说明,它们并不需要同时做映射。
3 . 花生壳下端口映射方法:
登录花生壳后,双击你想映射的域名,进入花生壳端口映射添加界面,点击打开内网映射。
应用名称可以随便填个好记的,内网主机就是你想被公网访问的那台电脑IP地址,内网端口就是希望被映射的端口,如下。
现在端口映射窗口就会添加一条映射记录,此时,公网只要使用花生壳分配的这个域名+端口,就可以访问内网的主机了。
10. 如何设置端口映射 端口映射的几种方法
具体操作步骤如下:
1、首先点击[系统偏好设置]选项。