1. 数据挖掘免费软件工具有哪些
1.Rapid MinerRapid Miner,原名YALE又一个学习环境,是一个用于机器学习和数据挖掘实验的环境,用于研究和实际的数据挖掘任务。毫无疑问,这是世界领先的数据挖掘开源系统。该工具以Java编程语言编写,通过基于模板的框架提供高级分析。
它使得实验可以由大量的可任意嵌套的操作符组成,这些操作符在XML文件中是详细的,并且是由快速的Miner的图形用户界面完成的。最好的是用户不需要编写代码。它已经有许多模板和其他工具,让我们可以轻松地分析数据。
2. IBM SPSS Modeler
IBM SPSS Modeler工具工作台最适合处理文本分析等大型项目,其可视化界面非常有价值。 它允许您在不编程的情况下生成各种数据挖掘算法。 它也可以用于异常检测、贝叶斯网络、CARMA、Cox回归以及使用多层感知器进行反向传播学习的基本神经网络。
3.Oracle Data Mining
Oracle。 作为“高级分析数据库”选项的一部分,Oracle数据挖掘功能允许其用户发现洞察力,进行预测并利用其Oracle数据。您可以构建模型来发现客户行为目标客户和开发概要文件。
Oracle Data Miner GUI使数据分析师、业务分析师和数据科学家能够使用相当优雅的拖放解决方案处理数据库内的数据。 它还可以为整个企业的自动化、调度和部署创建SQL和PL / SQL脚本。
2. 大数据分析工具有哪些
大数据分析工具有:
1、R-编程
R 编程是对所有人免费的最好的大数据分析工具之一。它是一种领先的统计编程语言,可用于统计分析、科学计算、数据可视化等。R 编程语言还可以扩展自身以执行各种大数据分析操作。
在这个强大的帮助下;语言,数据科学家可以轻松创建统计引擎,根据相关和准确的数据收集提供更好、更精确的数据洞察力。它具有类数据处理和存储。我们还可以在 R 编程中集成其他数据分析工具。
除此之外,您还可以与任何编程语言(例如 Java、C、Python)集成,以提供更快的数据传输和准确的分析。R 提供了大量可用于任何数据集的绘图和图形。
2、Apache Hadoop
Apache Hadoop 是领先的大数据分析工具开源。它是一个软件框架,用于在商品硬件的集群上存储数据和运行应用程序。它是由软件生态系统组成的领先框架。
Hadoop 使用其 Hadoop 分布式文件系统或 HDFS 和 MapRece。它被认为是大数据分析的顶级数据仓库。它具有在数百台廉价服务器上存储和分发大数据集的惊人能力。
这意味着您无需任何额外费用即可执行大数据分析。您还可以根据您的要求向其添加新节点,它永远不会让您失望。
3、MongoDB
MongoDB 是世界领先的数据库软件。它基于 NoSQL 数据库,可用于存储比基于 RDBMS 的数据库软件更多的数据量。MongoDB 功能强大,是最好的大数据分析工具之一。
它使用集合和文档,而不是使用行和列。文档由键值对组成,即MongoDB 中的一个基本数据单元。文档可以包含各种单元。但是大小、内容和字段数量因 MongoDB 中的文档而异。
MongoDB 最好的部分是它允许开发人员更改文档结构。文档结构可以基于程序员在各自的编程语言中定义的类和对象。
MongoDB 有一个内置的数据模型,使程序员能够理想地表示层次关系来存储数组和其他元素。
4、RapidMiner
RapidMiner 是分析师集成数据准备、机器学习、预测模型部署等的领先平台之一。它是最好的免费大数据分析工具,可用于数据分析和文本挖掘。
它是最强大的工具,具有用于分析过程设计的一流图形用户界面。它独立于平台,适用于 Windows、Linux、Unix 和 macOS。它提供各种功能,例如安全控制,在可视化工作流设计器工具的帮助下减少编写冗长代码的需要。
它使用户能够采用大型数据集在 Hadoop 中进行训练。除此之外,它还允许团队协作、集中工作流管理、Hadoop 模拟等。
它还组装请求并重用 Spark 容器以对流程进行智能优化。RapidMiner有五种数据分析产品,即RapidMiner Studio Auto Model、Auto Model、RapidMiner Turbo Prep、RapidMiner Server和RapidMiner Radoop。
5、Apache Spark
Apache Spark 是最好、最强大的开源大数据分析工具之一。借助其数据处理框架,它可以处理大量数据集。通过结合或其他分布式计算工具,在多台计算机上分发数据处理任务非常容易。
它具有用于流式 SQL、机器学习和图形处理支持的内置功能。它还使该站点成为大数据转换的最快速和通用的生成器。我们可以在内存中以快 100 倍的速度处理数据,而在磁盘中则快 10 倍。
除此之外,它还拥有 80 个高级算子,可以更快地构建并行应用程序。它还提供 Java 中的高级 API。该平台还提供了极大的灵活性和多功能性,因为它适用于不同的数据存储,如 HDFS、Openstack 和 Apache Cassandra。
6、Microsoft Azure
Microsoft Azure 是领先的大数据分析工具之一。Microsoft Azure 也称为 Windows Azure。它是 Microsoft 处理的公共云计算平台,是提供包括计算、分析、存储和网络在内的广泛服务的领先平台。
Windows Azure 提供两类标准和高级的大数据云产品。它可以无缝处理大量数据工作负载。
除此之外,Microsoft Azure 还拥有一流的分析能力和行业领先的 SLA 以及企业级安全和监控。它也是开发人员和数据科学家的最佳和高效平台。它提供了在最先进的应用程序中很容易制作的实时数据。
无需 IT 基础架构或虚拟服务器进行处理。它可以轻松嵌入其他编程语言,如 JavaScript 和 C#。
7、Zoho Analytics
Zoho Analytics 是最可靠的大数据分析工具之一。它是一种 BI 工具,可以无缝地用于数据分析,并帮助我们直观地分析数据以更好地理解原始数据。
同样,任何其他分析工具都允许我们集成多个数据源,例如业务应用程序、数据库软件、云存储、CRM 等等。我们还可以在方便时自定义报告,因为它允许我们生成动态且高度自定义的可操作报告。
在 Zoho 分析中上传数据也非常灵活和容易。我们还可以在其中创建自定义仪表板,因为它易于部署和实施。世界各地的用户广泛使用该平台。此外,它还使我们能够在应用程序中生成评论威胁,以促进员工和团队之间的协作。
它是最好的大数据分析工具,与上述任何其他工具相比,它需要的知识和培训更少。因此,它是初创企业和入门级企业的最佳选择。
以上内容参考 网络——大数据分析
3. 数据分析工具类软件,好用的有哪些
未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
分析软件有Excel、SPSS、MATLAB、 SAS、Finereport等 其中Excel我就不多说了相信大家都懂。 SPSS是世界上最早采用图形菜单驱动界面的统计软件它将几乎所有的功能都以统一、规范的界面展现出来。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足大部分的工作需要。 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境使用的。 其优点如下: 一、高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 二、 具有完备的图形处理功能,实现计算结果和编程的可视化; 三、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 四、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。 但是这款软件的使用难度较大,非专业人士不推荐使用。 SAS是把数据存取,管理,分析和展现有机地融为一体。其功能非常强大统计方法齐,全,新。它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等。SAS系统基本上可以分为四大部分:SAS数据库部分;SAS分析核心;SAS开发呈现工具;SAS对分布处理模式的支持及其数据仓库设计。不过这款软件的使用需要一定的专业知识,非专业人士不推荐使用。 Finereport类EXCEL设计模式,EXCEL+绑定数据列”形式持多SHEET和跨SHEET计算,完美兼容EXCEL公式,用户可以所见即所得的设计出任意复杂的表样,轻松实现中国式复杂报表。它的功能也是非常的丰富,比如说 数据支持与整合、聚合报表、数据地图、Flash打印、交互分析等
BI数据分析工具这个可以。BI数据分析系统用来将企业中现有的数据进行有效的整合,快速准确地提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
做BI数据分析系统十多年的厂 商(奥威 软件)
spss,excel,在线spss-spssau,R等等。最好用的是在线网页spssau。
大数据分析的几个方面:
1、可视化分析:可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2、数据挖掘算法:大数据分析的理论核心就是数据挖掘算法。
3、预测性分析:从大数据中挖掘出特点,通过科学的建立模型,从而预测未来的数据。
4、语义引擎:需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5、数据质量和数据管理:能够保证分析结果的真实性。
目前市场上的数据分析工具还是比较多的,国内跟国外都有,我就介绍几款主流的给楼主。
国外:
Tableau:自身定位是一款可视化工具,与Qlikview的定位差不多,可视化功能很强大,对计算机的硬件要求较高,部署较复杂。目前移动端只支持IOS系统。
Qlikview:最大的竞争者是Tableau,同Tableau和国内众多BI一样,是属于新一代的轻量化BI产品,体现在建模、部署和使用上。只能运行在windows系统,C/S的产品架构。采用内存动态计算,数据量小时,速度很快;数据量大时,吃内存很厉害性能偏慢。
Cognos:传统BI工具中最被广泛使用的,已被IBM收购。拥有强大的数据库平台、在数据管理、数据整合以及中间件领域专业功底深厚。偏操作型,手工建模,一旦需求变化需要 重新建模,学习要求较高。
国内:
FineBI:帆软旗下的自助性BI产品,轻量化的BI工具,部署方便,走多维分析方向。后期采用jar包升级换代,维护方便,最具性价比。
永洪BI:敏捷BI软件,产品稳定性较高。利用sql处理数据,不支持程序接口,实施交由第三方外包。
当前流行的图形可视化和数据分析软件有Matlab,Mathmatica和Maple等。这些软件功能强大,可满足科技工作中的许多需要,但使用这些软件需要一定的计算机编程知识和矩阵知识,并熟悉其中大量的函数和命令。
瑭锦tanjurd解释而使用Origin就像使用Excel和Word那样简单,只需点击鼠标,选择菜单命令就可以完成大部分工作,获得满意的结果。 但它又比excel要强大些。一般日常的话可以用Excel,然后加载宏,里面有一些分析工具,不过有时需要数据库软件支持。
4. 数据挖掘工具有哪些
数据挖掘工具有很多,但我觉得思迈特软件Smartbi Mining数据挖掘平台好用,它通过深度数据建模,为企业提供预测能力支持文本分析、五大类算法和数据预处理,并为用户提供一站式的流程式建模、拖拽式操作和可视化配置体验。5. 数据挖掘什么软件简单
数据挖掘用什么软件
1.R是用于统计分析和图形化的计算机语言及分析工具;
2.Weka可能是名气最大的开源机器学习和数据挖掘软件,但用起来并不方便,界面也简单了点;
3.Tanagra 是使用图形界面的数据挖掘软件;4.RapidMiner现在流行的势头在上升,但它的操作方式和商用软件差别较大,不支持分析流程图的方式,当包含的运算符比较多的时候就不容易查看了;
5.KNIME和Orange看起来都不错,Orange界面看上去很清爽,但我发现它不支持中 文。推荐KNIME,同时安装Weka和R扩展包。
对于普通用户可以选 用界面友好易于使用的软件,对于希望从事算法开发的用户则可以根据软件开发工具不同(Java、R、C++、Python等)来选择相应的软件。
求推荐简单好用的数据挖掘软件 10分
那肯定是SPSS啊,网上自学教程也一堆,如果你不追求特别专业的,只是想数据可视化的基础上有意思数据挖掘的功能,也可以用watson *** ytics,它还支持自然语言呢
常用的数据挖掘工具有哪些
RapidMiner、R、Weka、KNIME、GGobi、Orange,都是优秀的挖掘工具,可以依据自己的需要选择。
常用数据挖掘工具有哪些
EXCEL MATLAB Origin 等等
当前流行的图形可视化和数据分析软件有Matlab,Mathmatica和Maple等。这些软件功能强大,可满足科技工作中的许多需要,但使用这些软件需要一定的计算机编程知识和矩阵知识,并熟悉其中大量的函数和命令。而使用Origin就像使用Excel和Word那样简单,只需点击鼠标,选择菜单命令就可以完成大部分工作,获得满意的结果。 但它又比excel要强大些。一般日常的话可以用Excel,然后加载宏,里面有一些分析工具,不过有时需要数据库软件支持
学习数据挖掘一般要学哪些软件和工具
1、WEKA
WEKA 原生的非 Java 版本主要是为了分析农业领域数据而开发的。该工具基于 Java 版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与 RapidMiner 相比优势在于,它在 GNU 通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。
WEKA 支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。添加序列建模后,WEKA 将会变得更强大,但目前不包括在内。
2、RapidMiner
该工具是用 Java 语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。另外,除了数据挖掘,RapidMiner 还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自 WEKA(一种智能分析环境)和 R 脚本的学习方案、模型和算法。
RapidMiner 分布在 AGPL 开源许可下,可以从 SourceForge 上下载。SourceForge 是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括 *** 使用的 MediaWiki。
3、NLTK
当涉及到语言处理任务,没有什么可以打败 NLTK。NLTK 提供了一个语言处理工具,包括数据挖掘、机器学习、数据抓取、情感分析等各种语言处理任务。
而您需要做的只是安装 NLTK,然后将一个包拖拽到您最喜爱的任务中,您就可以去做其他事了。因为它是用 Python 语言编写的,你可以在上面建立应用,还可以自定义它的小任务。
4、Orange
Python 之所以受欢迎,是因为它简单易学并且功能强大。如果你是一个 Python 开发者,当涉及到需要找一个工作用的工具时,那么没有比 Orange 更合适的了。它是一个基于 Python 语言,功能强大的开源工具,并且对初学者和专家级的大神均适用。
此外,你肯定会爱上这个工具的可视化编程和 Python 脚本。它不仅有机器学习的组件,还附加有生物信息和文本挖掘,可以说是充满了数据分析的各种功能。
5、KNIME
数据处理主要有三个部分:提取、转换和加载。 而这三者 KNIME 都可以做到。 KNIME 为您提供了一个图形化的用户界面,以便对数据节点进行处理。它是一个开源的数据分析、报告和综合平台,同时还通过其模块化数据的流水型概念,集成了各种机 器学习的组件和数据挖掘,并引起了商业智能和财务数据分析的注意。
KNIME 是基于 Eclipse,用 Java 编写的,并且易于扩展和补充插件。其附加功能可随时添加,并且其大量的数据集成模块已包含在核心版本中。
6、R-Programming
如果我告诉你R项目,一个 GNU 项目,是由 R(R-programming简称,以下统称R)自身编写的,你会怎么想?它主要是由 C 语言和 FORTRAN 语言编写的,并且很多模块都是由 R 编写的,这是一款针对编程语言和软件环境进行统计计算和制图的免费软件。
R语言被广泛应用于数据挖掘,以及开发统计软件和数据分析中。近年来,易用性和可扩展性也大大提高了 R 的知名度。除了数据,它还提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收......
学习数据挖掘一般要学哪些软件和工具
1、WEKA
WEKA 原生的非 Java 版本主要是为了分析农业领域数据而开发的。该工具基于 Java 版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与 RapidMiner 相比优势在于,它在 GNU 通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。
WEKA 支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。添加序列建模后,WEKA 将会变得更强大,但目前不包括在内。
2、RapidMiner
该工具是用 Java 语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。另外,除了数据挖掘,RapidMiner 还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自 WEKA(一种智能分析环境)和 R 脚本的学习方案、模型和算法。
RapidMiner 分布在 AGPL 开源许可下,可以从 SourceForge 上下载。SourceForge 是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括 *** 使用的 MediaWiki。
3、NLTK
当涉及到语言处理任务,没有什么可以打败 NLTK。NLTK 提供了一个语言处理工具,包括数据挖掘、机器学习、数据抓取、情感分析等各种语言处理任务。
而您需要做的只是安装 NLTK,然后将一个包拖拽到您最喜爱的任务中,您就可以去做其他事了。因为它是用 Python 语言编写的,你可以在上面建立应用,还可以自定义它的小任务。
目前业界常用的数据挖掘分析工具有哪些
数据分析的概念太宽泛了,做需要的是侧重于数据展示、数据挖掘、还是数据存储的?是个人用还是企业、部门用呢?应用的场景是制作简单的个人图表,还是要做销售、财务还是供应链的分析?
那就说说应用最广的BI吧,企业级应用,其实功能上已经涵盖了我上面所述的部分,主要用于数据整合,构建分析,展示数据供决策分析的,譬如FineBI,是能够”智能”分析数据的工具了。
哪个软件建立数据库比较简单好用
随着数据大数据的发展,数据安全已经上升到一个很高的高度。随着国家对数据安全的重视,国产数据库开始走进中国个大企业,其中不乏 *** 、国企。
实时数据库系统是开发实时控制系统、数据采集系统、CIMS系统等的支撑软件。在流程行业中,大量使用实时数据库系统进行控制系统监控,系统先进控制和优化控制,并为企业的生产管理和调度、数据分析、决策支持及远程在线浏览提供实时数据服务和多种数据管理功能。实时数据库已经成为企业信息化的基础数据平台,可直接实时采集、获取企业运行过程中的各种数据,并将其转化为对各类业务有效的公共信息,满足企业生产管理、企业过程监控、企业经营管理之间对实时信息完整性、一致性、安全共享的需求,可为企业自动化系统与管理信息系统间建立起信息沟通的桥梁。帮助企业的各专业管理部门利用这些关键的实时信息,提高生产销售的营运效率。如果你想定制这款国产数据库 可以打 前面是 一三六 中间是 六一二零 末尾是 四一四七
北京开运联合信息技术股份有限公司-实时性工业数据库软件(CreatRun Database )
实时性工业数据库软件(CreatRun Database )是什么?
1、实时性工业数据库软件(CreatRun Database ) 是开运联合公司针对行业应用,独立研发的,拥有全部自主知识产权的企业级实时/历史数据库平台。为企业监控生产情况、计算性能指标、进行事故分析和对设备启停分析诊断、故障预防等提供重要的数据保障。
2、实时性工业数据库软件(CreatRun Database ) 可广泛用于工业控制自动化数据的高速采集和存储,提供高速、海量数据存储和基础分析能力。
3、实时性工业数据库软件(CreatRun Database ) 可随时观察以及在线分析生产过程。长期保存的历史数据不仅可以重现历史生产情况,也使大规模数据挖掘成为可能。 提供企业生产信息管理解决方案,可以有效应对“从小到大” “由近及远” 的各种企业级数据应用。
4、CreatRun Database 可在线按照时间序列以毫秒级精度自动采集企业的各类过程自动化系统中的生产数据,高效压缩并存储。同时可向用户和应用程序提供实时和历史数据,使得用户可随时观察以及在线分析生产过程。长期保存的历史数据不仅可以重现历史生产情况,也使大规模数据挖掘成为可能。
【工业软件开发】实时性工业数据库软件(CreatRun Database )系统主要技术指标:
支持数据类型:digital、int16、int32、float16、float32、float64、String等类型
标签容量:200,000 Tag
数据容量:TB级
客户端并发用户数:500 个
生产过程数据采集时间响应速度:<500 毫秒
时间戳分辨率:毫秒
存储速度:>100,000 输入值/秒存档数据回取事务吞吐量:>2,000,000 输出值/秒
实时性工业数据库软件(CreatRun Database )系统特性——高可用性:
1、高效的数据存储策略及压缩算法“死区例外+可变斜率压缩算法 ”,精确到每个Tag的压缩配置,有效提高了历史数据存储性能,节约磁盘空间.
2、高速的数据缓存机制,使并行访问锁域粒度精确到“Block(1KBytes)”,实现了并行访问能力的最大化。使历史数据访问路由复杂度“最小化、均衡化,扁平化”,不界定“冷热”数据,所有数据访问时间成本一致,同时提供均衡访问特性和最大远程数据访问友好度。
3、Creat RUN ......
数据挖掘工具一般都有哪些
数据挖掘工具有国外的Qlik,国内的有永洪,收费是肯定的,你可以先去找些可以免费试用的挖掘工具,国内的ETHINK平台好像可以
数据挖掘工具有哪些?
SQL Server是数据库,但内建数据挖掘功能,若提到工具的话,大概有SAS, SPSS, Statistica(Dell), R, Revolution R...
6. 大数据分析软件有哪些
常用的大数据分析软件有
1.专业的大数据分析工具
2.各种Python数据可视化第三方库
3.其它语言的数据可视化框架
一、专业的大数据分析工具
1、FineReport
FineReport是一款纯Java编写的、集数据展示(报表)和数据录入(表单)功能于一身的企业级web报表工具,只需要简单的拖拽操作便可以设计复杂的中国式报表,搭建数据决策分析系统。
2、FineBI
FineBI是新一代自助大数据分析的商业智能产品,提供了从数据准备、自助数据处理、数据分析与挖掘、数据可视化于一体的完整解决方案,也是我比较推崇的可视化工具之一。
FineBI的使用感同Tableau类似,都主张可视化的探索性分析,有点像加强版的数据透视表。上手简单,可视化库丰富。可以充当数据报表的门户,也可以充当各业务分析的平台。
二、Python的数据可视化第三方库
Python正慢慢地成为数据分析、数据挖掘领域的主流语言之一。在Python的生态里,很多开发者们提供了非常丰富的、用于各种场景的数据可视化第三方库。这些第三方库可以让我们结合Python语言绘制出漂亮的图表。
1、pyecharts
Echarts(下面会提到)是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。当Python遇上了Echarts,pyecharts便诞生了,它是由chenjiandongx等一群开发者维护的Echarts Python接口,让我们可以通过Python语言绘制出各种Echarts图表。
2、Bokeh
Bokeh是一款基于Python的交互式数据可视化工具,它提供了优雅简洁的方法来绘制各种各样的图形,可以高性能地可视化大型数据集以及流数据,帮助我们制作交互式图表、可视化仪表板等。
三、其他数据可视化工具
1、Echarts
前面说过了,Echarts是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。
大家都知道去年春节以及近期央视大规划报道的网络大数据产品,如网络迁徙、网络司南、网络大数据预测等等,这些产品的数据可视化均是通过ECharts来实现的。
2、D3
D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。
7. 常用的数据挖掘工具有哪些
市场上的数据挖掘工具一般分为三个组成部分:a、通用型工具;b、综合/DSS/OLAP数据挖掘工具;c、快速发展的面向特定应用的工具。常用的数据挖掘工具有很多,例如:8. 现在市面上有哪些好用的数据挖掘工具或者平台
现在市面上用得最多的数据挖掘工具要数思迈特软件Smartbi Mining。它是是思迈特软件Smartbi旗下的产品。思迈特软件Smartbi Mining通过深度数据建模,可以为你提供预测能力,支持多种高效实用的机器学习算法,包含了分类、回归、聚类、预测、关联,5大类机器学习的成熟算法。9. 国内有哪些比较好的数据挖掘工具呢
国内比较好的数据挖掘工具有很多,比如思迈特软件Smartbi。10. 大数据分析哪个软件做的好
大数据分析的软件有很多,其中SQL数据分析、Excel数据分析、SPSS数据分析、SAS数据分析、R数据分析等这些软件都是挺不错的。
1、SQL数据分析
SQL对于很多数据分析师,取数是基本功。可以翻一下很多数据分析岗位的招聘启事,不管实际需不需要,都会把熟练掌握SQL这一条写上来。SQL并不是这么复杂,要学习的只是取数、中高级查询、简单数据清洗等。
4、SAS数据分析
SAS由于其功能强大而且可以编程,很受高级用户的欢迎,也是最难掌握的软件之一,多用于企业工作之中。需要编写SAS程序来首铅灶处理数据,进行分析。在所有的统计软件中,SAS有最强大的绘图工具,由SAS/Graph模块提供,有着强大的数据管理和同时处理大批数据文件的功能。
5、R数据分析
R是一个开源的分析软件,也是分析能力不亚于SPSS和Matlab等商业软件的轻量级(仅指其占用空间极小,功能却是重量级的)分析工具。R支持Windows、Linux和Mac OS系统,对于用户来说非常方便,R和Matlab都是通过命令行来进行操作,这一点和适合有编程背景或喜好的数据分析人员。