导航:首页 > 电脑视频 > 电脑硬盘运作原理视频

电脑硬盘运作原理视频

发布时间:2022-05-11 06:40:30

⑴ 电脑硬盘什么样子的啊结构什么样啊工作原理是什么样的

DIY装机指的是自行选择电脑的各个硬件,这些硬件包括处理器、主板、内存、显卡、硬盘、机箱、电源等,在保证兼容、合理搭配的同时将所有的DIY硬件搭配组装为一台完整的电脑,也是所谓的“组装机”、“兼容机”,今天小编再来帮大家科普一下硬盘选购知识和硬盘知识,教你如何挑选合适的硬盘。
硬盘分为固态硬盘和机械硬盘以及混合硬盘三个类型,而绝大数的用户都是采用固态硬盘和机械硬盘双硬盘方案,现在混合硬盘市场需要很小,市场上装机常见主要是固态硬盘和机械硬盘,我们先来简单介绍一下这三个类型的硬盘知识吧。
一、硬盘 选购 的类型:
1、机械硬盘(HDD)
是一款传统式硬盘,在没有固态硬盘之前都是搭配的机械硬盘,现在装机搭配机械硬盘多数作为储存副盘。机械硬盘的结构主要是由一个或者多个铝制或者玻璃制成的磁性盘片、磁头、转轴、磁头控制器、控制电机、数据转换器、接口以及缓存等几个部分组成。在机械硬盘在工作的时候,磁头悬浮在高速旋转的磁性盘片上进行读写数据。
优点主要是容量大,价格便宜,技术成熟,硬盘破坏可做数据恢复,而缺点主要是速度相比固态硬盘要慢,发热大,噪音大,防震抗摔性差。
2、固态硬盘(SSD)
固态硬盘是在机械硬盘之后推出的一款新型硬盘,也是现在装机首选硬盘之一,都是设为主盘运用,大大提升系统速度。固态硬盘主要是由多个闪存芯片加主控以及缓存组成的阵列式储存,属于以固态电子储存芯片阵列制成的一种硬盘。
优点主要是相比机械硬盘,读取速度更快,寻道时间更小,能够提升系统、软件、游戏等读写速度,静音、防震抗摔性佳,低功耗、轻便、发热小。而缺点主要是价格偏贵、容量较小,大储存需要的时候,往往需要搭配机械硬盘来运用。
3、混合硬盘(SSHD)
混合硬盘相当于机械硬盘和固态硬盘的结合产品,采用容量较小的闪存颗粒作为储存常用文件,而磁盘才是最为重要的储存介质,而闪存仅仅是起了缓冲的作用,将更多的常用文件保存到闪存内减小寻道时间,从而提升效率。
混合硬盘优缺点主要是读写速度相比机械硬盘要快,但是速度不如固态硬盘,与机械硬盘同样,发热显着,有显着噪音,有震动。
二、硬盘 选购 的品牌
1、机械硬盘:西部数据(WD)、希捷(ST)
2、固态硬盘:三星、Intel、浦科特、Toshiba、建兴、闪迪、金士顿、威刚、WD、影驰、七彩虹、台电等。
一般来说,首选三星、intel、浦科特,不过价格偏贵,其次金士顿、闪迪、Toshiba等,性价比品牌可以影驰、威刚、台电、七彩虹等。
三、硬盘 选购 的容量
同价位情况下,机械硬盘的容量要比固态硬盘要大很多,因此大储存的情况下,必须搭配机械硬盘作为储存运用,除非你是土豪,直接购买大容量的固态硬盘。
固态硬盘容量通常:120G、240G、320G、500G、1T、2T或者以上等。不过现在基本都是选用120G、240G容量为主,因为大容量的固态硬盘价格绝对让你怀疑人生,不过相信经过固态硬盘多年的发展,大容量会越来越主流,越来越便宜。
机械硬盘容量通常:1T、2T、3T、4T或者以上等。一般基本都是选用1T、2T机械硬盘,再大的基本用不到,除非真有这样的储存需要。
四、硬盘 选购 的接口
机械硬盘现在都是SATA3接口,而固态硬盘常见的有:SATA 3接口,PCI-E接口,M.2接口,其中M.2之间也有不一样的规格,主要由2242、2260、2280三种规格。
SATA3接口的固态硬盘是现在运用广泛的,而M.2接口固态硬盘慢慢主流起来,而PCI-E接口一般运用在高端机上,拥有更高的速度体验。
五、硬盘 选购 的尺寸
台式电脑机械硬盘都是3.5英寸,而SATA3接口的固态硬盘是2.5寸的,与笔记本的机械硬盘尺寸相似,因此也可以运用在笔记本上。PCI-E接口的固态硬盘只适于台式电脑,并不合适笔记本,而M.2和SATA的固态硬盘,台式电脑和笔记本都是通用的。
不过对于现在的笔记本和台式电脑来说,M.2接口的固态硬盘外形小巧,打破了SATA接口带来的性能瓶颈,因此装机之家小编坚信,M.2接口的固态硬盘才是未来趋势。
是什么决定了固态硬盘和机械硬盘速度?
固态硬盘主要是颗粒与主控, 固态的颗粒与主控好坏决定了一款固态硬盘的性能,颗粒与主控越好,无疑固态硬盘的速度越强。
SSD的颗粒的传统分类:SLC、MLC、TLC,SLC颗粒要强于MLC,而MLC颗粒又强于TLC,不过SLC颗粒在现在市场基本很少,(装机之家原创)主要是价格偏贵,现在中高端的固态还是MLC颗粒的天下,而TLC颗粒成本较低,性能与寿命不如MLC,定位市场入门级固态硬盘。
SLC = Single-Level Cell ,即1bit/cell,速度快寿命长,价格超贵(约MLC 3倍以上的价格),约10万次擦写寿命。
MLC = Multi-Level Cell,即2bit/cell,速度一般寿命一般,价格一般,约1000--3000次擦写寿命。
TLC = Trinary-Le

⑵ 硬盘的工作原理(能多详细就多详细)!!

现在的硬盘,无论是IDE还是SCSI,采用的都是温彻思特“技术,都有以下特点:
1。磁头,盘片及运动机构密封。
2。固定并高速旋转的镀磁盘片表面平整光滑。
3。磁头沿盘片径向移动。
4。磁头对盘片接触式启停,但工作时呈飞行状态不与盘片直接接触。

盘片:硬盘盘片是将磁粉附着在铝合金(新材料也有用玻璃)圆盘片的表面上.这些磁粉
被划分成称为磁道的若干个同心圆,在每个同心圆的磁道上就好像有无数的任意排列的小
磁铁,它们分别代表着0和1的状态。当这些小磁铁受到来自磁头的磁力影响时,其排列的
方向会随之改变。利用磁头的磁力控制指定的一些小磁铁方向,使每个小磁铁都可以用来
储存信息。

盘体:硬盘的盘体由多个盘片组成,这些盘片重叠在一起放在一个密封的盒中,它们在主
轴电机的带动下以很高的速度旋转,其每分钟转速达3600,4500,5400,7200甚至以上。

磁头:硬盘的磁头用来读取或者修改盘片上磁性物质的状态,一般说来,每一个磁面都会
有一个磁头,从最上面开始,从0开始编号。磁头在停止工作时,与磁盘是接触的,但是
在工作时呈飞行状态。磁头采取在盘片的着陆区接触式启停的方式,着陆区不存放任何数
据,磁头在此区域启停,不存在损伤任何数据的问题。读取数据时,盘片高速旋转,由于
对磁头运动采取了精巧的空气动力学设计,此时磁头处于离盘面数据区0.2---0.5微米高
度的”飞行状态“。既不与盘面接触造成磨损,又能可*的读取数据。

电机:硬盘内的电机都为无刷电机,在高速轴承支撑下机械磨损很小,可以长时间连续工
作。高速旋转的盘体产生了明显的陀螺效应,所以工作中的硬盘不宜运动,否则将加重轴
承的工作负荷。硬盘磁头的寻道饲服电机多采用音圈式旋转或者直线运动步进电机,在饲
服跟踪的调节下精确地跟踪盘片的磁道,所以在硬盘工作时不要有冲击碰撞,搬动时要小
心轻放。

原理说到这里,大家都明白了吧?

首先,磁头和数据区是不会有接触的,所以不存在磨损的问题。
其次,一开机硬盘就处于旋转状态,主轴电机的旋转可以达到4500或者7200转每分钟,这
和你是否使用FLASHGET或者ED都没有关系,只要一通电,它们就在转.它们的磨损也和软
件无关。
再次,寻道电机控制下的磁头的运动,是左右来回移动的,而且幅度很小,从盘片的最内
层(着陆区)启动,慢慢移动到最外层,再慢慢移动回来,一个磁道再到另一个磁道来寻
找数据。不会有什么大规模跳跃的(又不是青蛙)。所以它的磨损也是可以忽略不记的。

那么,热量是怎么来的呢?

首先是主轴电机和寻道饲服电机的旋转,硬盘的温度主要是因为这个。
其次,高速旋转的盘体和空气之间的摩擦。这个也是主要因素。

而硬盘的读写???
很遗憾,它的发热量可以忽略不记!!!!!!!!!!
硬盘的读操作,是盘片上磁场的变化影响到磁头的电阻值,这个过程中盘片不会发热,磁
头倒是因为电流发生变化,所以会有一点热量产生。写操作呢?正好反过来,通过磁头的
电流强度不断发生变化,影响到盘片上的磁场,这一过程因为用到电磁感应,所以磁头发
热量较大。但是盘片本身是不会发热的,因为盘片上的永磁体是冷性的,不会因为磁场变
化而发热。

但是总的来说,磁头的发热量和前面两个比起来,是小巫见大巫了。
热量是可以辐射传导的,那么高热量对盘片上的永磁体会不会有伤害呢?其实伤害是很小
的,永磁体消磁的温度,远远高于硬盘正常情况下产生的温度。当然,要是你的机箱散热
不好,那可就怪不了别人了。

我这里不得不说一下某人的几个错误:

一。高温是影响到磁头的电阻感应灵敏度,所以才会产生读写错误,和永磁体没有关系。

二。所谓的热膨胀,不会拉近盘体和磁头的距离,因为磁头的飞行是空气动力学原理,在
正常情况下始终和盘片保持一定距离。当然要是你大力打击硬盘,那么这个震动......

三。所谓寻道是指硬盘从初使位置移动到指定磁道。所谓的复位动作,并不是经常发生的
。因为磁道的物理位置是存放在CMOS里面,硬盘并不需要移动回0磁道再重新出发。只要
磁头一启动,所谓的复位动作就完成了,除非你重新启动电脑,不然复位动作就不会再发
生。

四。IDE硬盘和SCSI硬盘的盘体结构是差不多的。只是SCSI硬盘的接口带宽比同时代的ID
E硬盘要大,而且往往SCSI卡往往都会有一个类似CPU的东西来减缓主CPU的占用率。仅此
而已,所以希捷才会把它的SCSI硬盘的技术用在IDE硬盘上。

五。硬盘的读写是以柱面的扇区为单位的。柱面也就是整个盘体中所有磁面的半径相同的
同心磁道,而把每个磁道划分为若干个区就是所谓的扇区了。硬盘的写操作,是先写满一
个扇区,再写同一柱面的下一个扇区的,在一个柱面完全写满前,磁头是不会移动到别的
磁道上的。所以文件在硬盘上的存储,并不是像一般人的认为,是连续存放在一起的(从
使用者来看是一起,但是从操作系统底层来看,其存放不是连续的)。所以FLASHGET或者
ED开了再多的线程,磁头的寻道一般都不会比你一边玩游戏一边听歌大。当然,这种情况
只是单纯的下载或者上传而已,但是其实在这个过程中,谁能保证自己不会启动其它需要
读写硬盘的软件?可能很多人都喜欢一边下载一边玩游戏或者听歌吧?更不用说WINDOWS
本身就需要频繁读写虚拟内存文件了。所以,用FG下载也好,ED也好,对硬盘的折磨和平
时相比不会太厉害的。

六。再说说FLASHGET为什么开太多线程会不好和ED为什么硬盘读写频繁。首先,线程一多
,cpu的占用率就高,换页动作也就频繁,从而虚拟内存读写频繁,至于为什么,学过操
作系统原理的应该都知道,我这里就不说了。ED呢?同时从几个人那里下载一个文件,还
有几个人同时在下载你的文件,这和FG开多线程是类似的。所以硬盘灯猛闪。但是,现在
的硬盘是有缓存的,数据不是马上就写到硬盘上,而是先存放在缓存里面,,然后到一定
量了再一次性写入硬盘。在FG里面再怎么设置都好,其实是先写到缓存里面的。但是这个
过程也是需要CPU干预的,所以设置时间太短,CPU占用率也高,所以硬盘灯也还是猛闪的
,因为虚拟文件在读写。

七。硬盘读写频繁,磁头臂在寻道伺服电机的驱动下移动频繁,但是对机械来说这点耗损
虽有,其实不大。除非你的硬盘本身就有机械故障比如力臂变形之类的(水货最常见的故
障)。真正耗损在于磁头,不断变化的电流会造成它的老化,但是和它的寿命相比.....
.应该也是在合理范围内的。除非因为震动,磁头撞击到了盘体。

八。受高温影响的最严重的是机械的电路,特别是硬盘外面的那块电路板,上面的集成块
在高温下会加速老化的。所以IBM的某款玻璃硬盘,虽然有坏道,但是一用某个软件,马
上就不见了。再严重点的,换块线路板,也就正常了。就是这个原因.

打了这么多字,实在是太累了。
总之,硬盘会因为环境不好和保养不当而影响寿命,但是这绝对不是软件的错。
FLASHGET也好,ED也好,FTP也好,它们虽然对硬盘的读写频繁,但是还不至于比你一般玩游
戏一般听歌对硬盘伤害大.说得更加明白的话,它们对硬盘的所谓耗损,其实可以忽略不记
.不要因为看见硬盘灯猛闪,就在那里瞎担心.不然那些提供WEB服务和FTP服务的服务器,
它们的硬盘读写之大,可绝非平常玩游戏,下软件的硬盘可比的。

硬盘有一个参数叫做连续无故障时间。它是指硬盘从开始运行到出现故障的最长时间,单
位是小时,英文简写是MTBF。一般硬盘的MTBF至少在30000或40000小时。具体情况可以看
硬盘厂商的参数说明。这个连续无故障时间,大家可以自己除一下,看看是多少年。然而
大家自己想想,自己的硬盘平时连续工作最久是多长时间。

目前我使用的机器,已经连续开机1年了,除了中途有几次关机十几分钟来清理灰尘外,
从来没有停过(使用金转6代40G)。另外还有三台使用SCSI硬盘的服务器,是连续两年没
有停过了,硬盘的发热量绝非平常IDE硬盘可比(1万转的硬盘啊)。
在这方面,我想我是有发言权的。

最后补充一下若干点:

一。硬盘最好不要买水货或者返修货。水货在运输过程中是非常不安全的,虽然从表面上
看来似乎无损伤,但是有可能在运输过程中因为各种因素而对机械体造成损伤。返修货就
更加不用说了。老实说,那些埋怨硬盘容易损坏的人,你们应该自己先看看,自己的硬盘
是否就是这些货色。

二。硬盘的工作环境是需要整洁的,特别是注意不要在频繁断电和灰尘很多的环境下使用
硬盘。机箱要每隔一两个月清理一下灰尘。

三。硬盘的机械最怕震动和高温。所以环境要好,特别是机箱要牢固,以免共震太大。电
脑桌也不要摇摇晃晃的。

四。要经常整理硬盘碎片。这里有一个大多数人的误解,一般人都以为硬盘碎片会加大硬
盘耗损,其实不是这样的。硬盘碎片的增多本身只是会让硬盘读写所花时间比碎片少的时
候多而已,对硬盘的耗损是可以忽略的(我在这里只说一个事实,目前网络上的服务器,
它们用得最多的操作系统是UNIX,但是在UNIX下面是没有磁盘碎片整理软件的。就连微软
的NT4,本身也是没有的)。不过,因为磁头频繁的移动,造成读写时间的加大,所以CPU
的换页动作也就频繁了,而造成虚拟文件(在这里其实准确的说法是换页文件)读写频繁
,从而加重硬盘磁头寻道的负荷。这才是硬盘碎片的坏处。

五。在硬盘读写时尽量避免忽然断电,冷启动和做其他加重CPU负荷的事情(比如在玩游
戏时听歌,或者在下载时玩大型3D游戏),这些对硬盘的伤害比一般人想象中还要大。原
因我就不说了,打字太累。

总之,只要平常注意使用硬盘,硬盘是不会那么快就和我们说BYEBYE的。当然,如果是硬
盘本身的质量就不行,那我就无话可说了

1.硬盘的读写原理
硬盘的工作原理可分为读(从硬盘读取数据)与写(将数据写入硬盘)两个方面来进行。对硬盘而言,不管是读或写都需要下达存取数据的命令,所以,只要CPU接受到来自系统程序发出的读写指令,CPU便开始向内存与硬盘发出命令。
在读的部分,CPU会先下达写入数据的命令,此时内存会经由总线将数据送往硬盘,通过主板I/0芯片(负责传输数字数据的控制芯片,也就是南桥芯片)的居中协调后,数据便会循序送入硬盘的缓冲区中(也就是硬盘的高速缓存),最后再由硬盘控制电路将缓)中区内的数据记录 I至盘片上(这时在硬盘内的机械部分便会进行一连串的读写操作)。
在写的部分,同样也是由CPU先下达读取数据的命令,主板上的 I/O芯片便又开始居中协调,然后硬盘控制芯片便会开始将数据读至缓冲区内,最后才通过主板上的总线将硬盘缓冲区内的数据送至内存,并完成读取硬盘数据的操作。
因此,数据的两个储存地点分别是硬盘与内存;其中,数据会经过缓冲区的暂存,与总线的传输;当然,所有的操作除了CPU的下达命令外,也要经过主板上的I/0芯片与硬盘控制电路的命令才能达成。
2.硬盘的物理存储原理
硬盘是使用硬式的盘片作为记录媒介体,通过磁头的微小电流而中磁盘片磁化成无数磁场,来储存数据。最常用的材料包括有铝合金、铬合金等材料,IBM还曾经推出玻璃为材料的硬盘。现在的IDE、SATA和SCSI接口硬盘采用的都是“温彻思特”技术,都有以下特点:1.磁头、盘片及运动机构密封:2.固定并高速旋转的镀磁盘片表面平整光滑;3.磁头沿盘片径向移动:4.磁头对盘片接触式启停,但工作时呈飞行状态不与盘片直接接触。
(1)盘片
硬盘盘片是将磁粉附着在圆盘片的表面上,这些磁粉被划分成称为磁道的若干个同心圆,在每个同心圆的磁道上就好像有无数的任意排列的小磁铁,它们分别代表着0和l的状态。当这些小磁铁受到来自磁头的磁力影响时,其排列的方向会随之改变。利用磁头的磁力控制指定的一些小磁铁方向,使每个小磁铁都可以用来储存信息。
(2)盘体
硬盘的盘体由多个盘片组成,这些盘片重叠在一起放在一个密封的盒中,它们在主轴电机的带动下以很高的速度旋转,其每分钟转速达3600转、4500转、5400转、7200转、10000转或15000转。
(3)磁头
硬盘的磁头用来读取或者修改盘片上磁性物质的状态,一般说来,每一个磁面都会有一个磁头,从最上面开始,从0开始编号。磁头在停止工作时,与磁盘是接触的,但是在工作时呈飞行状态。磁头采取在盘片的着陆区接触式启停的方式,着陆区不存放任何数据,磁头在此区域启停,不存在损伤任何数据的问题。读取数据时,盘片高速旋转,由于对磁头运动采取了精巧的空气动力学设计,此时磁头处于离盘面数据区0.2—0.5微米高度的“飞行状态”。既不与盘面接触造成磨损,又能可靠地读取数据。
(4)电机
硬盘内的电机都为无刷电机,在高速轴承支撑下机械磨损很小,可以长时间连续工作。高速旋转的盘体产生了明显的陀螺效应,所以工作中的硬盘不宜运动,否则将加重轴承的工作负荷。硬盘磁头的寻道伺服电机多采用音圈式旋转或者直线运动步进电机,在伺服跟踪的调节下精确地跟踪盘片的磁道,所以在硬盘工作时不要有冲击碰撞,搬动时要小心轻放。

⑶ 硬盘的工作原理是什么啊

硬盘工作的时候是告诉旋转的,所以硬盘在工作的时候是不能去动 的,很容易造成硬盘损伤!
硬盘的盘面划分成一个一个的同心圆,称为磁道,多个盘片的相同位置的磁道形成了一个同心圆柱,这就是硬盘的柱面,在每个磁道上又划分出相同存储容量的扇区作为存储数据的最小单位。要让硬盘正常工作,硬盘必须有相应的初始化和管理程序,其中有部分写在盘片的特定区域,这就是我们常说的固件区,对于不同的硬盘,这个区域的物理位置是不同的,所记录的程序的数量和功能也有差别

⑷ 电脑硬盘的工作原理是什么

现在的硬盘,无论是IDE还是SCSI,采用的都是"温彻思特“技术,都有以下特点:

1.磁头,盘片及运动机构密封。

2.固定并高速旋转的镀磁盘片表面平整光滑。

3.磁头沿盘片径向移动。

4.磁头对盘片接触式启停,但工作时呈飞行状态不与盘片直接接触。

⑸ 硬盘的工作原理

现在的硬盘,无论是IDE还是SCSI,采用的都是“温彻思特“技术,都有以下特点:1。磁头,盘片及运动机构密封。2。固定并高速旋转的镀磁盘片表面平整光滑。3。磁头沿盘片径向移动。4。磁头对盘片接触式启停,但工作时呈飞行状态不与盘片直接接触。

盘片:硬盘盘片是将磁粉附着在铝合金(新材料也有用玻璃)圆盘片的表面上.这些磁粉被划分成称为磁道的若干个同心圆,在每个同心圆的磁道上就好像有无数的任 意排列的小磁铁,它们分别代表着0和1的状态。当这些小磁铁受到来自磁头的磁力影响时,其排列的方向会随之改变。利用磁头的磁力控制指定的一些小磁铁方 向,使每个小磁铁都可以用来储存信息。

盘体:硬盘的盘体由多个盘片组成,这些盘片重叠在一起放在一个密封的盒中,它们在主轴电机的带动下以很高的速度旋转,其每分钟转速达3600,4500,5400,7200甚至以上。

磁头:硬盘的磁头用来读取或者修改盘片上磁性物质的状态,一般说来,每一个磁面都会有一个磁头,从最上面开始,从0开始编号。磁头在停止工作时,与磁盘是接 触的,但是在工作时呈飞行状态。磁头采取在盘片的着陆区接触式启停的方式,着陆区不存放任何数据,磁头在此区域启停,不存在损伤任何数据的问题。读取数据 时,盘片高速旋转,由于对磁头运动采取了精巧的空气动力学设计,此时磁头处于离盘面数据区0.2---0.5微米高度的”飞行状态“。既不与盘面接触造成 磨损,又能可靠的读取数据。

电机:硬盘内的电机都为无刷电机,在高速轴承支撑下机械磨损很小,可以长时间连续工作。高速旋转的盘体产生了 明显的陀螺效应,所以工作中的硬盘不宜运动,否则将加重轴承的工作负荷。硬盘磁头的寻道饲服电机多采用音圈式旋转或者直线运动步进电机,在饲服跟踪的调节 下精确地跟踪盘片的磁道,所以在硬盘工作时不要有冲击碰撞,搬动时要小心轻放。

原理说到这里,大家都明白了吧?

首先,磁头和数据区是不会有接触的,所以不存在磨损的问题。

其次,一开机硬盘就处于旋转状态,主轴电机的旋转可以达到4500或者7200转每分钟,这和你是否使用FLASHGET或者ED都没有关系,只要一通电,它们就在转.它们的磨损也和软件无关。

再次,寻道电机控制下的磁头的运动,是左右来回移动的,而且幅度很小,从盘片的最内层(着陆区)启动,慢慢移动到最外层,再慢慢移动回来,一个磁道再到另一个磁道来寻找数据。不会有什么大规模跳跃的(又不是青蛙)。所以它的磨损也是可以忽略不记的。

那么,热量是怎么来的呢?
首先,是主轴电机和寻道饲服电机的旋转,硬盘的温度主要是因为这个。

其次,高速旋转的盘体和空气之间的摩擦。这个也是主要因素。而硬盘的读写?很遗憾,它的发热量可以忽略不记!

硬盘的读操作,是盘片上磁场的变化影响到磁头的电阻值,这个过程中盘片不会发热,磁头倒是因为电流发生变化,所以会有一点热量产生。写操作呢?正好反过来, 通过磁头的电流强度不断发生变化,影响到盘片上的磁场,这一过程因为用到电磁感应,所以磁头发热量较大。但是盘片本身是不会发热的,因为盘片上的永磁体是 冷性的,不会因为磁场变化而发热。

但是总的来说,磁头的发热量和前面两个比起来,是小巫见大巫了。热量是可以辐射传导的,那么高热量对盘片上的永磁体会不会有伤害呢?其实伤害是很小的,永磁体消磁的温度,远远高于硬盘正常情况下产生的温度。当然,要是你的机箱散热不好,那可就怪不了别人了。

⑹ 简述硬盘的工作原理

硬盘类似于光驱,只不过是密封的。里面一个高速旋转的盘片作为存储器,一个磁头在上面来回移动来读取数据!

⑺ 电脑硬盘的工作原理

1.硬盘的磁头

一块硬盘存取数据的工作完全都是依靠磁头来进行,换句话说,没有磁头,也就没有实际意义上的硬盘。那么,究竟什么是磁头呢?磁头就是硬盘进行读写的“笔尖”,通过全封闭式的磁阻感应读写,将信息记录在硬盘内部特殊的介质上。硬盘磁头的发展先后经历了亚铁盐类磁头(MonolithicHead)、MIG(MetalInGap)磁头和薄膜磁头(ThinFilmHead)、MR磁头等几个阶段。前3种传统的磁头技术都是采取了读写合一的电磁感应式磁头,在设计方面因为同时需要兼顾读/写两种特性,因此也造成了硬盘在设计方面的局限性。

第4种磁阻磁头在设计方面引入了全新的分离式磁头结构,写入磁头仍沿用传统的磁感应磁头,而读取磁头则应用了新型的MR磁头,即所谓的感应写、磁阻读,针对读写的不同特性分别进行优化,以达到最好的读写性能。

除上述几种磁头技术外,技术更为创新、采用多层结构、磁阻效应更好的材料制作的GMR磁头(GiantMagnetoResistiveheads,巨磁阻磁头),可以使目前硬盘的容量在此基础上再提高10倍以上。

2.硬盘的盘面

如果把硬盘磁头比喻作“笔”的形容成立,那么所谓硬盘的盘面自然就是这“笔”下的“纸”。如果您曾经有幸打开过自己的硬盘,可以发现硬盘内部是由金属磁盘组成的,有单盘片的,有双盘片的,也有多盘片的。它们通过表面的磁物质结合在一起。与平时使用的那些普通软磁盘存储介质的不连续颗粒相比,这种特殊物质的金属磁盘具有更高的记录密度和更强的安全性能。

目前市场上主流硬盘的盘片大都是采用了金属薄膜磁盘构成,这种金属薄膜磁盘较之普通的金属磁盘具有更高的剩磁(Remanence:经消磁后,残留在磁介质上的磁感应)和高矫顽力(CoerciveForce:作用于磁化材料以去除剩磁的反向磁通强度),因此也被硬盘厂商普遍采用。

与金属薄膜磁盘相比,用玻璃做为新的盘片,有利于把硬盘盘片做得更平滑,单位磁盘密度也会更高。同时由于玻璃的坚固特性,新一代的玻璃硬磁盘在性能方面也会更加稳定。不过也有一点问题,如果一旦把玻璃材质作为硬盘基片,玻璃材质较之金属材质的脆弱性就会表现出来。

3.硬盘的马达

有了“笔”和“纸”,要让“笔”能够在“纸”上顺利地写字,当然还要有“手”的控制,而这双控制磁头在磁片上高速工作的“手”就应该是硬盘主轴上的马达了。硬盘正因为有了马达,才可以带动磁盘片在真空封闭的环境中高速旋转,马达高速运转时所产生的浮力使磁头飘浮在盘片上方进行工作。硬盘在工作时,通过马达的连动将需要存取资料的扇区带到磁头下方,马达的转速越快,等待存取记录的时间也就越短。从这个意义上讲,硬盘马达的转速在很大程度上决定了硬盘最终的速度。

在当今硬盘不断向着超大容量迈进的同时,硬盘的速度也在不断提高,这当然就要求硬盘的马达也必须能够跟上技术时代飞速发展的步伐。进入2000年后,5400rpm的硬盘即将成为历史,7200rpm势必成为2000年乃至今后一段时间的主流产品。速度方面的提升对于硬盘的马达而言,自然也是提出了更高的要求。7200rpm、10000rpm甚至15000rpm的硬盘马达自然不会再是传统意义上的普通滚珠轴承马达,因为硬盘转速的不断提高会带来诸如磨损加剧、温度升高、噪声增大等一系列负面问题。传统的普通滚珠轴承马达自然无法妥善解决这些问题,于是曾广泛应用在精密机械工业上的液态轴承马达(Fluiddynamicbearingmotors)被引入到硬盘技术中。与传统的滚珠轴承马达不同,液态轴承马达使用的是黏膜液油轴承,这种特殊的轴承以油膜代替了原先的滚珠,一方面避免了与金属面的直接磨擦,将传统马达所带来的噪声及高温降至最低;另一方面,油膜可以有效地吸收外来的震动,使硬盘的抗震能力由以往的150G提高至1200G;再一个方面,从理论上讲,液态轴承马达无磨损,使用寿命可以达到无限长,虽然我们无法通过这一点就奢想自己的新硬盘能够“长生不老”,但最起码可以延长使用寿命。

4.硬盘的转速

硬盘的转速(RotateSpeed),正像我们上文所述,硬盘的马达直接决定了硬盘的转速。理论上讲,硬盘的转速越快越好,因为较高的硬盘转速可以极大地缩短硬盘的平均寻道时间和实际读写时间。但是,硬盘的高转速带给硬盘的负面影响就是转速越快,硬盘表面的发热量越大,如果再加上机箱散热不佳和其他周边散热过多的原因,很可能造成机器运行不稳定。也正是这个原因,目前市场上绝大多数笔记本电脑中的专用硬盘,其转速一般都不会超过4500rpm。

5.硬盘的平均寻道时间、平均访问时间和平均潜伏时间

所谓硬盘的平均寻道时间(AverageSeekTime),其实就是指硬盘在盘面上移动读写头至指定磁道寻找相应目标数据所用的时间。我们在描述硬盘读取数据能力时,目前主要以毫秒为计算单位,而硬盘读取数据一次大多在6~14ms之间。当硬盘的单碟容量增大时,磁头的寻道动作和移动距离会相应减少,这样也就导致硬盘本身的平均寻道时间减少,从而提高了硬盘传输数据的速度。

而平均访问时间(AverageAccessTime),指的就是平均寻道时间与平均潜伏时间的总和。平均访问时间基本上也就能够代表硬盘找到某一数据所用的时间。平均访问时间越短越好,一般情况下应该控制在11~18ms之间,建议用户选择那些平均访问时间在15ms以下的硬盘。

所谓平均潜伏时间(AverageLatencyTime),其准确的概念定位就是指相应磁道旋转到磁头下方的时间,一般情况下在2~6ms之间。

6.硬盘的外部传输率和内部传输率

所谓硬盘的外部数据传输率(ExternalTransferRate)就是指电脑通过接口将数据交给硬盘的传输速度,而内部数据传输率(InternalTransferRate)就是指硬盘将这些数据记录在自身盘片上的速度,也称最大或最小持续传输率(SustainedTransferRate)。从实际应用方面分析,硬盘的外部数据传输率比其内部传输率速度要快很多,在它们之间有一块缓冲区可以缓解二者的速度差距。而从硬盘缓冲区读取数据的速度又称之为突发数据传输率(BurstdataTransferRate)。

普通的EIDE硬盘理论上的传输速率,都已达到了17.5MB/s左右,而采用UltraDMA/33、UltraDMA/66技术后,传输率瞬间速度便可以达到33.3MB/s和66MB/s,至于UltraDMA/100和UltraDMA/160,也是指在这个速度上的提升。

7.硬盘的缓冲区

所谓硬盘的缓冲区(硬件缓冲)就是指硬盘本身的高速缓存(Cache),它能够大幅度地提高硬盘整体性能。高速缓存其实就是指硬盘控制器上的一块存取速度极快的DRAM内存,分为写通式和回写式。所谓写通式,就是指在读硬盘时系统先检查请求,寻找所要求的数据是否在高速缓存中。如果在则称为被命中,缓存就会发送出相应的数据,磁头也就不必再向磁盘访问数据,从而大幅度改善硬盘的性能。

所谓回写式,指的是在内存中保留写数据,当硬盘空闲时再次写入。从这一点上而言,回写式具有高于写通式的系统性能。较早期的硬盘大多带有128KB、256KB、512KB等高速缓存,目前的高档硬盘高速缓存大多已经达到1MB、2MB甚至更高,在高速缓存的取材上也采用了速度比DRAM更快的同步内存SDRAM,确保硬盘性能更为卓越。

硬盘技术

硬盘所采用的技术,目前主要包括3个方面,一是磁头技术,二是防震技术,三是数据保护技术。随着各大制造厂商的技术竞争,目前这3个方面的技术要点也逐渐走向融合。

1.磁头技术

(1)磁阻磁头技术(Magneto-ResistiveHead)

磁阻磁头技术是一种比较传统的硬盘磁头技术,是完全基于磁电阻效应工作的,其核心就是一片金属材料,其电阻随磁场的变化而变化。应用这种磁阻磁头技术的原理就是:通过磁阻元件连着的一个十分敏感的放大器可以测出微小的电阻变化。所以越先进的MR技术可以提高记录密度来记录数据,增加单盘片容量即硬盘的最高容量,进而提高数据传输率。

(2)巨型磁阻磁头(GMR)

这是MR磁阻磁头技术的换代技术,目前绝大多数的硬盘产品都应用了这种技术。采用了巨型磁阻磁头技术的硬盘,其读、写工作是分别由不同的磁头来完成的,这种变化从而可以有效地提高硬盘的工作效率,并使增大磁道密度成为可能。

(3)OAW(光学辅助温式技术)

OAW是美国希捷公司新研制技术代号,很可能是未来磁头技术的发展方向。应用这种OAW技术,未来的硬盘可以在1英寸面积内写入105000以上的磁道,单碟容量更是有望突破36GB。

2.防震技术

(1)SPS防震保护系统

这是昆腾公司在其火球7代(EX)系列之后普遍采用的硬盘防震动保护系统。其设计思路就是分散外来冲击能量,尽量避免硬盘磁头和盘片之间的意外撞击,使硬盘能够承受1000G以上的意外冲击力。

(2)ShockBlock防震保护系统

虽然这是Maxtor公司的专利技术,但其设计思路与防护风格与昆腾公司的SPS技术有着异曲同工之妙,也是为了分散外来的冲击能量,尽量避免磁头和盘片相互撞击,但它能承受的最大冲击力却可以达到1500G甚至更高。

3.数据保护技术

(1)S.M.A.R.T技术

S.M.A.R.T技术是目前绝大多数硬盘已经普遍采用的通用安全技术,而应用S.M.A.R.T技术,用户们能够预先测量出某些硬盘的特性。举个例子,如监测硬盘磁头的飞行高度。因为一旦磁头开始出现飞得太高或太低的情况,硬盘在运行中就极有可能报错,S.M.A.R.T技术就是一种对硬盘故障预先发出报警的廉价数据保护。

当然,利用S.M.A.R.T技术可预测的硬盘故障一般是硬盘性能恶化的结果,其中约60%为机械性质的,40%左右则是对软性故障的有效预测。应用S.M.A.R.T技术可以有效地防止并减少硬盘数据丢失,而预先报警系统更能够让电脑用户及时掌握自己硬盘的性能和实际使用状况。

(2)数据卫士

西部数据(WD)公司的数据卫士能够在硬盘工作的空余时间里,每8个小时便自动执行硬盘扫描、检测、修复盘片的各扇区等步骤。以上操作完全是自动运行,无需用户干预与控制,特别是对初级用户与不懂硬盘维护的用户十分适用。

(3)DPS(数据保护系统)

昆腾公司在推出火球7代硬盘以后,从8代开始的所有硬盘中,都内建了所谓的DPS(数据保护系统)系统模式。DPS系统模式的工作原理是在其硬盘的前300MB内,存放操作系统等重要信息,DPS可在系统出现问题后的90s内自动检测恢复系统数据,如果不行,则启用随硬盘附送的DPS软盘,进入程序后DPS系统模式会自动分析造成故障的原因,尽量保证用户硬盘上的数据不受损失。

(4)MaxSafe技术

MaxSafe技术是迈拓公司在其金钻2代以后普遍采用的技术。MaxSafe技术的核心就是将附加的ECC校验位保存在硬盘上,使硬盘在读写过程中,每一步都要经过严格的校验,以此来保证硬盘数据的完整性。

4.其他综合技术方面

(1)PRML(,硬盘最大相似性技术)读取技术利用PRML读取技术可以使单位硬盘盘片存储更大量的信息。在增加硬盘容量的同时,还可以有效地提高硬盘数据的读取和传输率。

(2)UltraDSP(超级数字信号处理器)技术及接口技术

应用UltraDSP进行数学运算,其速度较一般CPU快10~50倍。采用UltraDSP技术,单个的DSP芯片可以同时提供处理器及驱动接口的双重功能,以减少其他电子元件的使用,可大幅度地提高硬盘的速度和可靠性。

接口技术可以极大地提高硬盘的最大外部传输率,最大的益处在于,可以把数据从硬盘直接传输到主内存而不占用更多的CPU资源,提高系统性能。Maxtor公司2000年最新的钻石9代和金钻4代都采用了双DSP芯片技术,将硬盘的系统性能提升到极致。

(3)3DDefenseSystem(3D保护系统)

3DDefenseSystem是美国希捷公司独有的一种硬盘保护技术。3DDefenseSystem中主要包括了DriveDefense(磁盘保护)、DataDefense(数据保护)及DiagnosticDefense(诊断保护)等3个方面的内容。

DriveDefense(磁盘保护)。这里面又包括:G-Force保护,可帮助希捷硬盘承受业界内最高的非工作状态下的震动,即在2ms内震动力即使达到350G,也不会使硬盘损坏;SeaShield保护,提供ESD及安全处理,特别是对PCBA(PrintedCircuitBoardAssembly,印刷电路集成板);SeaShell保护,这是一种可以替换原有ESD(Elestro-StaticDischarge)的硬盘工具包,通过这一保护系统可为硬盘提供更多的保护。

DataDefense(数据保护)。这里面又包括了希捷独创的Multidrive系统(SAMS)。所谓SAMS就是通过减小硬盘的旋转振动来最大程度地减少对硬盘的损坏;ECC(ErrorCorrectionCode,错误检正代码),即为高性能硬盘提供on-the-fly检正,还有就是对数据恢复提供最大限度Firmware(固件)检正,因此可以正确完整地进行读、恢复数据;SafeSaring,当硬盘断电及重新来电后,利用SafeSaring技术可以确保硬盘磁头回到同样的扇区,保证数据不丢失;End-to-EndPathProtection,确保数据在主机与磁盘之间传输的完整性。

DiagnosticDefense(诊断保护)。这里面也包括了SeaTools——诊断工具软件,可以帮助用户诊断系统是否存在问题,以及诊断错误是否由其他硬件及软件产生。另外,SeaTools还可以在ATA及SCSI产品中工作,可以应用于所有老旧的希捷硬盘;增强型的S.M.A.R.T功能,可以在硬盘发生错误与问题之前作为预测并向用户发出警告;Web-BasedTools(基于Web的工具),允许用户标识及解决一些非硬盘相关错误,如病毒等,也可以检正文件系统,解决硬件冲突以避免不必要的硬盘返修;DLD(DriveLoggingDiagnostics)——捕获不可恢复性数据错误,实质上就是交互性的诊断工作。

硬盘的工作模式

从主板的支持度来看,目前硬盘的工作模式主要有3种:NORMAL、LBA和LARGE模式。

NORMAL即我们平时讲的普通模式,也是最早的IDE方式。在此方式下对硬盘访问时,BIOS和IDE控制器对参数不作任何转换。该模式支持的最大柱面数为1024,最大磁头数为16,最大扇区数为63,每扇区字节数为512KB。因此支持最大硬盘容量为:512KB×63×16×1024=528MB。在此模式下即使硬盘的实际物理容量很大,但可访问的硬盘空间也只能是528MB。

LBA(LogicalBlockAddressing)即逻辑块寻址模式。应用这种模式所管理的硬盘空间突破了528MB的瓶颈,可达8.4GB。在LBA模式下,设置的柱面、磁头、扇区等参数并不是实际硬盘的物理参数。在访问硬盘时,由IDE控制器把由柱面、磁头、扇区等参数确定的逻辑地址转换为实际硬盘的物理地址。在LBA模式下,可设置的最大磁头数为255,其余参数与普通模式相同。

由此可计算出可访问的硬盘容量为:512KB×63×255×1024=8.4GB。LARGE又称为大硬盘管理模式。当硬盘的柱面超过1024而又不为LBA支持时可采用此种模式。LARGE模式采取的方法是把柱面数除以2,把磁头数乘以2,其结果总容量不变。例如,在NORMAL模式下柱面数为1220,磁头数为16,进入LARGE模式则柱面数为610,磁头数为32。这样在DOS中显示的柱面数小于1024,即可正常工作。

⑻ 硬盘的工作原理是什么

硬盘的工作原理
现在的硬盘,无论是IDE还是SCSI,采用的都是温彻思特“技术,都有以下特点:
1。磁头,盘片及运动机构密封。
2。固定并高速旋转的镀磁盘片表面平整光滑。
3。磁头沿盘片径向移动。
4。磁头对盘片接触式启停,但工作时呈飞行状态不与盘片直接接触。

盘片:硬盘盘片是将磁粉附着在铝合金(新材料也有用玻璃)圆盘片的表面上.这些磁粉
被划分成称为磁道的若干个同心圆,在每个同心圆的磁道上就好像有无数的任意排列的小
磁铁,它们分别代表着0和1的状态。当这些小磁铁受到来自磁头的磁力影响时,其排列的
方向会随之改变。利用磁头的磁力控制指定的一些小磁铁方向,使每个小磁铁都可以用来
储存信息。

盘体:硬盘的盘体由多个盘片组成,这些盘片重叠在一起放在一个密封的盒中,它们在主
轴电机的带动下以很高的速度旋转,其每分钟转速达3600,4500,5400,7200甚至以上。

磁头:硬盘的磁头用来读取或者修改盘片上磁性物质的状态,一般说来,每一个磁面都会
有一个磁头,从最上面开始,从0开始编号。磁头在停止工作时,与磁盘是接触的,但是
在工作时呈飞行状态。磁头采取在盘片的着陆区接触式启停的方式,着陆区不存放任何数
据,磁头在此区域启停,不存在损伤任何数据的问题。读取数据时,盘片高速旋转,由于
对磁头运动采取了精巧的空气动力学设计,此时磁头处于离盘面数据区0.2---0.5微米高
度的”飞行状态“。既不与盘面接触造成磨损,又能可*的读取数据。

电机:硬盘内的电机都为无刷电机,在高速轴承支撑下机械磨损很小,可以长时间连续工
作。高速旋转的盘体产生了明显的陀螺效应,所以工作中的硬盘不宜运动,否则将加重轴
承的工作负荷。硬盘磁头的寻道饲服电机多采用音圈式旋转或者直线运动步进电机,在饲
服跟踪的调节下精确地跟踪盘片的磁道,所以在硬盘工作时不要有冲击碰撞,搬动时要小
心轻放。
概括地说,硬盘的工作原理是利用特定的磁粒子的极性来记录数据。磁头在读取数据时,将磁粒子的不同极性转换成不同的电脉冲信号,再利用数据转换器将这些原始信号变成电脑可以使用的数据,写的操作正好与此相反。另外,硬盘中还有一个存储缓冲区,这是为了协调硬盘与主机在数据处理速度上的差异而设的。由于硬盘的结构比软盘复杂得多,所以它的格式化工作也比软盘要复杂,分为低级格式化,硬盘分区,高级格式化并建立文件管理系统。
硬盘驱动器加电正常工作后,利用控制电路中的单片机初始化模块进行初始化工作,此时磁头置于盘片中心位置,初始化完成后主轴电机将启动并以高速旋转,装载磁头的小车机构移动,将浮动磁头置于盘片表面的00道,处于等待指令的启动状态。当接口电路接收到微机系统传来的指令信号,通过前置放大控制电路,驱动音圈电机发出磁信号,根据感应阻值变化的磁头对盘片数据信息进行正确定位,并将接收后的数据信息解码,通过放大控制电路传输到接口电路,反馈给主机系统完成指令操作。结束硬盘操作的断电状态,在反力矩弹簧的作用下浮动磁头驻留到盘面中心。

⑼ 硬盘的工作过程

硬盘
1.硬盘的工作原理及过程
我们在讲内存一节时,专门提到过外存的概念,并指出硬盘就是目前电脑中最重要的外存设备.我们平时使用的Win98操作系统,办公软件,游戏软件和大量的数据文件等都存放在硬盘上,那么这样一块封得严严密密的东西又是如何工作的呢
说起来,硬盘的工作原理很简单,硬盘可以读取和写入保存数据,写入数据实际上是通过磁头对硬盘片表面的可磁化单元进行磁化,就象录音机的录音过程;不同的是,录音机是将模拟信号顺序地录制在涂有磁介质的磁带上,而硬盘是将二进制的数字信号以环状同心圆轨迹的形式,一圈一圈地记录在涂有磁介质的高速旋转的盘面上.读取数据时,只需把磁头移动到相应的位置读取此处的磁化编码状态即可.
2.硬盘的技术指标
现在没有足够大的硬盘空间,就别想装什么新软件,新游戏了,因为现在新出的软件几乎都是几十甚至上百兆的大个子,所以,硬盘作为计算机最主要的外部存储设备,其容量是第一性能指标.目前市场主流的硬盘一般为4.3GB或5.1GB(1G=1000M,约为10亿字节,相当于5亿个汉字),不久肯定会进一步增大,因为现在最大容量的硬盘都已达100GB了.
电脑各部件的速度都在不断在提升,硬盘也不敢拖后腿.硬盘的速度与转速,寻址时间,数据传输率,内部高速缓存都有非常大的关系.一般硬盘的平均访问时间为十几毫秒,但内存的速度要比硬盘快几百倍(DRAM的速度为60~100ns),所以内存通常会花大量的时间去等待硬盘读出数据,从而也使CPU效率下降.为了解决这个矛盾,现在的硬盘中一般都装了一定量的高速缓冲存储器来缓解硬盘数据存取的瓶颈.一般来说,容量越大的硬盘速度越快.
3.硬盘接口介绍
说到硬盘接口,总的说来可分为IDE(EIDE)和SCSI两种.
IDE(Integrated Drive Electronics),即集成驱动器电子接口,也称为AT-Bus或ATA接口,是十分普及的一种硬盘接口,其允许使用的最大硬盘空间为528MB;正因为IDE标准只能管理528MB的硬盘,所以Western Digital (即WD西部数据)公司又开发了EIDE(Enhanced IDE)标准,即增强型IDE标准,又称为FAST ATA接口,其主要的性能特点是突破了528MB容量限制,最高可达8.4GB.我们平时使用的其实就是这种接口标准,只不过一般人仍简称其为IDE接口.
Ultra DMA/33是昆腾和Intel等公司联合开发的ATA/IDE硬盘传输方式,它将IDE接口的数据传输速率由现有的16.6MB/S提高到了33MB/S.
Ultra DMA/66:该技术把接口的最高传输速率提升至66MB/S,是Ultra DMA/33技术的2倍,同时比该技术更能保证在高速转输过程中数据的完整性.
SCSI(Small Computer System Interface)即"小型计算机系统接口",是一种系统级的接口,它可以同时挂接各种不同的设备(如硬盘,光盘驱动器,磁带驱动器,扫描仪和打印机等),其主要性能特点是数据传输速率高,SCSI接口卡可以同时挂接多达7个SCSI接口设备;最近开发的SCSI-3新标准扩充了SCSI-2命令集,不过速率没有提高.另外,一个称为纤维通道(Fibre Channel)的标准也已开发出来,它能提供高达100M/s的数据传输率.
4.硬盘的选购及注意事项
硬盘的容量当然是越大越好的,现在,一个Win 98就要占掉两,三百兆的空间,还有那些庞大的3D游戏,office97之类的软件,你说是不是容量越大越好呢 况且现在的大容量硬盘价格也不算贵.至于接口类型,那就得看您是家用还是商用的了,如果是家用的,那IDE接口就已经够用了,因为IDE具有多种优点且成本低廉;SCSI接口的硬盘速度是要快一些,但价格也要贵一些.还有就是要注意品牌,Quantum,Seagate,Maxtor这几家都是老牌的有实力的硬盘厂商.
5.常见品牌介绍及识别
现在市场上最着名的硬盘品牌可能非昆腾莫属了,昆腾硬盘在品质稳定,耐久性,速度方面一直拥有良好声誉,昆腾的产品有大脚系列和火球系列,还有先锋系列等.
而希捷作为硬盘制造业的超级巨人,拥有业界最为先进的硬盘制造技术,它的产品就有巴厘系列,金牌系列和大灰熊系列,其标识是ST3xxxx N/W.
钻石公司作为国际着名的硬盘制造厂商,拥有世界先进的硬盘制造技术,其市场占有率仅次于西捷,昆腾,在广大用户中拥有较高的声誉.
此外,还可见到IBM桌面之星系列,西部数据的鱼子酱系列,JTS的冠军系列,富士通的MPB-30xxAT和MPC-30xxAT系列.以及三星,NEC和日立等公司的产品.
6.获取硬盘参数的方法
我们知道,没有正确的参数,硬盘是无法工作的.一般我们有以下常用的几种方法可以获取硬盘参数:
根据厂家出产时提供的参数,现在出产的硬盘一般都在背面标型号,容量等参数;
开机进入BIOS后,用IDE HDD AUTO DETECTION或其它类似命令可以自动检测到;
利用HDFORMAT,DM等低级格式化程序来获取硬盘参数.
7.分区及分区的决定因素
我们为什么要对一个硬盘分区使用呢 整个硬盘作为一个区来使用不行吗
答案是可以的.但是分区比不分区的利大于弊;其分区的决定因素有:
现在买的都是大容量的硬盘,分区可以减少磁盘空间的浪费;
分区可以减少由于病毒而对硬盘数据的破坏;
分区可以方便规划,管理大量的文件数据.
8.分区方法
那么,怎样对硬盘进行分区呢 我们可以利用Win98下DOS提供的FDISK.EXE程序对其进行分区,可能刚开始的时候有点不习惯,但知道其原理之后就会觉得很简便的了.
对于新买来的硬盘,用A盘启动机器后,在A:>后面键入fdisk ,进入分区界面后先选第一项建立一个主分区,然后还是选第一项建立一个扩展分区,最后就是激活一个DOS分区.按ESC键退出后就可以对分区进行格式化了.对于已有分区的硬盘要重新分区,就得先删掉以前的分区才能对其重新分区.删除分区的过程刚好和建立分的顺序相反,先是要删除扩展分区,再删除主分区.

9.硬盘的维护

微机系统的故障几乎30%都是由于硬盘损坏所引起的,你说怎能不好好地维护硬盘 一般来说,使用中应注意以下问题:
(1) 0磁道的保护
硬盘的0磁道是盘面最外沿的磁道,上面记录着最重要的系统信息.一旦破坏,硬盘就无法使用.因此必须保护好0磁道.
(2) 硬盘正在读写文件时不能关掉电源.
(3) 注意防尘,保持使用环境的清洁卫生.用户不能自行拆开硬盘盖,否则空气中的灰尘便进入盘内,磁头读/写操作时将划伤盘片或磁头.因此硬盘出现故障时决不允许在普通环境下拆开盘体.
(4) 防止硬盘受震动.在工作时严禁搬运硬盘,以免磁头与盘片产生撞击而擦伤盘片表面的磁层.在硬盘的安装,拆御过程中更要加倍小心,严禁摇晃,磕碰.
(5) 硬盘的整理.注意定期进行硬盘整理,以提高硬盘的读写速度.
(6) 防止计算机病毒对硬盘的破坏.计算机病毒对硬盘中存贮的信息是一个很大的威胁,所以应利用版本较新的抗病毒软件对硬盘进行定期的病毒检测.尽量避免对硬盘进行格式化,因为硬盘格式化会丢失全部数据并减少硬盘的使用寿命.

10.硬盘新技术

目前,围绕提高硬盘容量和存取速度,出现了很多新技术,主要有以下几项:

(1) MR(Magnet Resistance)磁阻和GMR(Giant Magrtetoresistive)巨磁阻技术:MR技术利用磁性材料在磁场中电磁阻力发生变化的普通"磁阻"现象,来提高硬盘性能.GMR与MR方法相似,但原理不同,GMR是利用电子的量子效应原理,利用它可制造密度更高的盘片.
(2) PRML(Partial Response Maximum Likelihood)技术:最大相似性技术能把硬盘存储容量提高30%.
(3) 硬盘的S.M.A.R.T(Self-Monitoring,Analysis and Reporting Technology)技术:"自监测,分析和报告技术"能够预先测量某些硬盘的特性,例如硬盘磁头的飞行高度,因为如果磁头飞得太高或太低,硬盘可能要出错.
(4) Ultra DMA技术:Ultra DMA采用总线主控方式,硬盘上有DMA(Direct Memory Access)直接内存通道控制器,由于CPU不直接参与硬盘读写,节约了宝贵的CPU资源,使得最大外部传输速率从每秒16.6MB倍增到33.3MB.
(5)转速:虽然严格说这方面的发展并不算新技术,但对硬盘的速度和性能有着很大的影响.EIDE接口的硬盘转速开始从5400PRM(转/分)向7200PRM进军,其内部传输速率提高了33%.
(6)SPS(Shock Protection)震动保护系统:SPS系统通过对机械部机进行特殊设计,可以保证磁盘在受到撞击时磁头仍然紧贴在盘面上,不会使磁头离开盘片而后反弹,使得磁头划伤磁盘和溅起的微粒散落在磁头周围,造成大范围损伤,从而大大降低了磁盘受损的概率,保证了数据不受损害.

好,硬盘就为您介绍到这里,请继续下面的学习.

⑽ 硬盘的工作原理

硬盘的主要构件包括马达、盘片、磁头和控制系统等等。其中,盘片和磁头是硬盘最为核心的部件,它们负担着数据的存储以及读取和写入的重任。
我们俗称的“玻璃盘片”或者“铝盘片”仅仅指的是盘片基体材料,盘片的结构其实并不简单。为了能够记录大量的信息,并且快速准确地被磁头读取和写入,需要先进的磁记录物质和辅助涂层。一张硬盘盘片的单面由多个不同的层复合而成,最上层是有机氟高分子材料组成的润滑层,保证磁头更加平稳地运行;接下来是由坚硬的碳材料构成的保护层,保护数据层不受物理损坏。再下面的磁记录层呈三明治结构,在两层钴-铂-铬-硼磁记录介质层(反铁磁性耦合介质,AFC)中间夹有厚度仅有0.6nm的金属钌层(仙女之尘技术)。磁记录层之下还有铬底层,然后才是盘片基体材料。
硬盘存储密度的飞速发展离不开磁头技术的配合。磁头技术也经历了多次革命,为了满足越来越高的存储需要,磁畴的尺寸越来越小,因此磁头的尺寸也变得越来越小,但同时效率却越来越高。从老式的锰铁磁体磁头到磁阻磁头,目前大量使用的巨磁阻磁头也已历经数代,未来还将出现隧道磁阻磁头和电流垂直平面磁头等更加先进的磁头。

阅读全文

与电脑硬盘运作原理视频相关的资料

热点内容
电脑上怎么下载班智达的软件 浏览:1189
无痕迹消除图片软件 浏览:736
免费小票软件 浏览:977
华为在哪里设置软件停止运行 浏览:978
用电脑键盘调节声音大小 浏览:1276
自动刷软件赚钱 浏览:1281
古装连续剧免费版 浏览:1432
工免费漫画 浏览:1167
手机软件专门储存文件 浏览:1526
uos如何用命令安装软件 浏览:1346
有线耳机插电脑麦克风 浏览:663
侏罗纪世界3在线观看完整免费 浏览:1014
单个软件怎么设置名称 浏览:736
凤凰网电脑版下载视频怎么下载视频怎么下载 浏览:1403
明白之后如何免费获得无人机 浏览:848
如何解禁软件菜单 浏览:882
副路由器连接电脑视频 浏览:1370
内置wifi电视如何装软件 浏览:1134
手机换零免费雪碧 浏览:1603
国行苹果如何下载美版软件 浏览:1235